MA3204 - Exercise 4

1. (Closure properties of projectives) Let \mathcal{A} be an abelian category. Show that the following hold:
(a) The zero object in \mathcal{A} is projective
(b) If P and Q are projective in \mathcal{A}, then the biproduct $P \oplus Q$ is projective in \mathcal{A}.
(c) If $\left\{P_{i}\right\}_{i \in I}$ is a collection of projective objects in \mathcal{A}, and if the coproduct $\coprod_{i \in I} P_{i}$ exists in \mathcal{A}, then $\coprod_{i \in I} P_{i}$ is projective in \mathcal{A}
(d) If P is projective in \mathcal{A} and $P \cong P_{1} \oplus P_{2}$, then P_{1} and P_{2} are projective in \mathcal{A}.
2. Let \mathbb{K} be a field, and let $\mathrm{Vect}_{\mathbb{K}}$ be the category of \mathbb{K}-vector spaces. Show that every object in Vect $_{\mathbb{K}}$ is projective and injective.
3. Recall that a left R-module N is flat if $-\otimes_{R} N$ is an exact functor. Show that the following hold:

- The flat R-modules satisfy the closure properties in Problem 1.
- R is a flat left R-module.

Conclude that any projective R-module is flat.
4. Show that \mathbb{Q} is flat but not projective in Ab .
5. Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be an additive functor between abelian categories and $G: \mathcal{B} \longrightarrow \mathcal{A}$ be a right adjoint to F. Show that if G is exact, then $F(P)$ is projective for any projective object P in \mathcal{A}. Dually, show that if F is exact, then $G(E)$ is injective for any injective object E in \mathcal{B}.
6. Let M be a right R-module and let N be a left R-module. Show that the canonical morphism $M \times N \rightarrow M \otimes_{R} N$ is the universal R-balanced map with domain $M \times N$.
7. Show that
(a) $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} Z / n \mathbb{Z} \cong \mathbb{Z} / d \mathbb{Z}$, where d is the greatest common divisor of n and m.
(b) For any commutative ring R and any ideals I and J of $R, R / I \otimes_{R}$ $R / J=R /(I+J)$.
(c) For every right R-module M over a ring R, and every left ideal I of $R, M \otimes_{R} R / I=M / I M$.
(d) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z} \cong 0$.
(e) $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}(i)$.
8. (The nine lemma) Consider the following diagram in an abelian category \mathcal{A}.

Assume that all the columns are exact. Using what you have learned in the lectures about exact sequences of complexes, show the following:

- If the two upper rows are exact, then the lower row is exact.
- If the two lower rows are exact, then the upper row is exact.
- If the first and third row is exact and $b_{2} \circ b_{1}=0$, then the middle row is exact.

This result is typically called the nine lemma.
9. Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be an additive functor between abelian categories. We say that F reflects exactness if whenever

$$
F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C)
$$

is exact, then the sequence

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

is exact. Show that if F is fully faithful and exact, then it reflects exactness.

