MA3204 - Exercise 1

- 1. Let \mathcal{A} be an abelian category and X^{\bullet} a complex in \mathcal{A} . Show the following:
 - If $H^n(X^{\bullet}) = 0$ for all n < 0, then there is a complex Y^{\bullet} with $Y^n = 0$ for all n < 0 and a quasi-isomorphism $X^{\bullet} \longrightarrow Y^{\bullet}$.
 - If $H^n(X^{\bullet}) = 0$ for all n > 0, then there is a complex Z^{\bullet} with $Z^n = 0$ for all n > 0 and a quasi-isomorphism $Z^{\bullet} \longrightarrow X^{\bullet}$.

Hint: For the first claim consider $Y^n = X^n$ for n > 0 and choose Y^0 adequately... The second claim is proved dually.

- 2. Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be an additive functor between abelian categories.
 - (a) Show that F induces a functor between categories of complexes $\operatorname{Ch}(F)\colon \operatorname{Ch}(\mathcal{A}) \longrightarrow \operatorname{Ch}(\mathcal{B})$, sending a complex X^{\bullet} to the complex obtained by applying F to each component and to each differential.
 - (b) Show that the functor Ch(F) induces a functor

$$\mathcal{K}(F): \mathcal{K}(\mathcal{A}) \longrightarrow \mathcal{K}(\mathcal{B}).$$

- 3. Let P be a projective right R-module, E and injective right R-module and F a flat right R-module. Show that
 - (a) $\operatorname{Ext}_{R}^{n}(P, -) = 0$ for all n > 0;
 - (b) $\operatorname{Ext}_{R}^{n}(-, E) = 0$ for all n > 0;
 - (c) $\operatorname{Tor}_{n}^{R}(F, -) = 0$ for all n > 0.
- 4. Show that the total complex of a double complex is a complex (i.e. the differential squares to 0).

5. Show the following result from the lecture. If R is a ring, M is a right R-module, and N is a left R-module, then we have

$$\operatorname{Tor}(M, -)(N) \cong \operatorname{Tor}(-, N)(M).$$

Hint: Use a similar argument as in the proof of the isomorphism

$$\operatorname{Ext}^{i}_{\mathcal{A}}(A, -)(B) \cong \operatorname{Ext}^{i}_{\mathcal{A}}(-, B)(A)$$

in the lecture.

- 6. Let *B* be an abelian group, let $A \subseteq B$ be a subgroup of *B*, and let n > 0 be a positive integer. In the motivation part of the first lecture we mentioned that $\operatorname{Tor}_{1}^{\mathbb{Z}}(B/A, \mathbb{Z}/n\mathbb{Z})$ measures the obstruction to $nA = \{n \cdot a \mid a \in A\}$ being equal to the intersection $A \cap nB$. In this exercise we investigate this problem. Prove the following:
 - The canonical inclusion $nA \to A \cap nB$ is an isomorphism if and only if the canonical map $A/nA \to B/nB$ is a monomorphism.
 - Applying the tensor product $\otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ to the exact sequence $0 \to A \to B \to B/A \to 0$, show that if $\operatorname{Tor}_{1}^{\mathbb{Z}}(B/A, \mathbb{Z}/n\mathbb{Z}) = 0$ then the map $nA \to A \cap nB$ is an isomorphism.
- 7. Consider the ring $R = \mathbb{K}[x]/\langle x^2 \rangle$, where \mathbb{K} is a field.
 - (a) Compute a projective resolution of the *R*-module $M = \langle x \rangle \subseteq R$. Hint: show that there exists an exact sequence

$$0 \to M \to R \to M \to 0$$

- (b) Compute a K-vector space basis of the vector space $\operatorname{Hom}_R(M, R)$.¹
- (c) Compute $\operatorname{Ext}_{R}^{n}(M, M)$ for all $n \geq 0$.
- (d) Compute $\operatorname{Tor}_{n}^{R}(M, M)$ for all $n \geq 0$.
- (e) Consider the complex Y^{\bullet} given by $Y^n = R$ for all n in \mathbb{Z} , with d_Y^n being the multiplication by x. Show that Y^{\bullet} is exact. Also show that Y^{\bullet} is not contractible (i.e. that the identity map on Y^{\bullet} is not null-homotopic).

 $^{^1\}mathrm{Note}$ that all Hom-spaces in this module category are naturally endowed with a K-module structure...

- 8. Consider the ring $R = \mathbb{Z}/4\mathbb{Z}$ and consider $M = \mathbb{Z}/2\mathbb{Z}$ as an *R*-module (check that there is a well-defined module structure!).
 - (a) Find a projective resolution of M as an R-module.*Hint: show that there exists an exact sequence*

$$0 \to M \to R \to M \to 0$$

- (b) Compute $\operatorname{Ext}_{R}^{n}(M, M)$ for all $n \geq 0$.
- (c) Compute $\operatorname{Tor}_n^R(M, M)$ for all $n \ge 0$.
- 9. [1, Exercise V.2] Let R be as below, and let S be the R-module which is \mathbb{K} as a \mathbb{K} -vector space, with all variables acting as 0. Calculate all $\operatorname{Ext}_{R}^{n}(S, S)$ for n > 0.
 - $R = \mathbb{K}[X]$
 - $R = \mathbb{K}[X]/(X^3)$
 - $R = \mathbb{K}[X, Y]$
 - $R = \mathbb{K}[X, Y]/(XY)$

References

 Steffen Oppermann, 2016 Notes in homological algebra https://folk.ntnu.no/opperman/HomAlg. pdf.