## MA3204 - Exercise 1

1. Let $\mathcal{A}$ be an abelian category and $X^{\bullet}$ a complex in $\mathcal{A}$. Show the following:

- If $H^{n}\left(X^{\bullet}\right)=0$ for all $n<0$, then there is a complex $Y^{\bullet}$ with $Y^{n}=0$ for all $n<0$ and a quasi-isomorphism $X^{\bullet} \longrightarrow Y^{\bullet}$.
- If $H^{n}\left(X^{\bullet}\right)=0$ for all $n>0$, then there is a complex $Z^{\bullet}$ with $Z^{n}=0$ for all $n>0$ and a quasi-isomorphism $Z^{\bullet} \longrightarrow X^{\bullet}$.

Hint: For the first claim consider $Y^{n}=X^{n}$ for $n>0$ and choose $Y^{0}$ adequately... The second claim is proved dually.
2. Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be an additive functor between abelian categories.
(a) Show that $F$ induces a functor between categories of complexes $\operatorname{Ch}(F): \operatorname{Ch}(\mathcal{A}) \longrightarrow \operatorname{Ch}(\mathcal{B})$, sending a complex $X^{\bullet}$ to the complex obtained by applying $F$ to each component and to each differential.
(b) Show that the functor $\operatorname{Ch}(F)$ induces a functor

$$
\mathcal{K}(F): \mathcal{K}(\mathcal{A}) \longrightarrow \mathcal{K}(\mathcal{B})
$$

3. Let $P$ be a projective right $R$-module, $E$ and injective right $R$-module and $F$ a flat right $R$-module. Show that
(a) $\operatorname{Ext}_{R}^{n}(P,-)=0$ for all $n>0$;
(b) $\operatorname{Ext}_{R}^{n}(-, E)=0$ for all $n>0$;
(c) $\operatorname{Tor}_{n}^{R}(F,-)=0$ for all $n>0$.
4. Show that the total complex of a double complex is a complex (i.e. the differential squares to 0 ).
5. Show the following result from the lecture. If $R$ is a ring, $M$ is a right $R$-module, and $N$ is a left $R$-module, then we have

$$
\operatorname{Tor}(M,-)(N) \cong \operatorname{Tor}(-, N)(M)
$$

Hint: Use a similar argument as in the proof of the isomorphism

$$
\operatorname{Ext}_{\mathcal{A}}^{i}(A,-)(B) \cong \operatorname{Ext}_{\mathcal{A}}^{i}(-, B)(A)
$$

in the lecture.
6. Let $B$ be an abelian group, let $A \subseteq B$ be a subgroup of $B$, and let $n>0$ be a positive integer. In the motivation part of the first lecture we mentioned that $\operatorname{Tor}_{1}^{\mathbb{Z}}(B / A, \mathbb{Z} / n \mathbb{Z})$ measures the obstruction to $n A=$ $\{n \cdot a \mid a \in A\}$ being equal to the intersection $A \cap n B$. In this exercise we investigate this problem. Prove the following:

- The canonical inclusion $n A \rightarrow A \cap n B$ is an isomorphism if and only if the canonical map $A / n A \rightarrow B / n B$ is a monomorphism.
- Applying the tensor product $-\otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$ to the exact sequence $0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0$, show that if $\operatorname{Tor}_{1}^{\mathbb{Z}}(B / A, \mathbb{Z} / n \mathbb{Z})=0$ then the map $n A \rightarrow A \cap n B$ is an isomorphism.

7. Consider the ring $R=\mathbb{K}[x] /\left\langle x^{2}\right\rangle$, where $\mathbb{K}$ is a field.
(a) Compute a projective resolution of the $R$-module $M=\langle x\rangle \subseteq R$.

Hint: show that there exists an exact sequence

$$
0 \rightarrow M \rightarrow R \rightarrow M \rightarrow 0
$$

(b) Compute a $\mathbb{K}$-vector space basis of the vector space $\operatorname{Hom}_{R}(M, R) \mathbb{D}^{\top}$
(c) Compute $\operatorname{Ext}_{R}^{n}(M, M)$ for all $n \geq 0$.
(d) Compute $\operatorname{Tor}_{n}^{R}(M, M)$ for all $n \geq 0$.
(e) Consider the complex $Y^{\bullet}$ given by $Y^{n}=R$ for all $n$ in $\mathbb{Z}$, with $d_{Y}^{n}$ being the multiplication by $x$. Show that $Y^{\bullet}$ is exact. Also show that $Y^{\bullet}$ is not contractible (i.e. that the identity map on $Y^{\bullet}$ is not null-homotopic).

[^0]8. Consider the ring $R=\mathbb{Z} / 4 \mathbb{Z}$ and consider $M=\mathbb{Z} / 2 \mathbb{Z}$ as an $R$-module (check that there is a well-defined module structure!).
(a) Find a projective resolution of $M$ as an $R$-module.

Hint: show that there exists an exact sequence

$$
0 \rightarrow M \rightarrow R \rightarrow M \rightarrow 0
$$

(b) Compute $\operatorname{Ext}_{R}^{n}(M, M)$ for all $n \geq 0$.
(c) Compute $\operatorname{Tor}_{n}^{R}(M, M)$ for all $n \geq 0$.
9. [1, Exercise V.2] Let $R$ be as below, and let $S$ be the $R$-module which is $\mathbb{K}$ as a $\mathbb{K}$-vector space, with all variables acting as 0 . Calculate all $\operatorname{Ext}_{R}^{n}(S, S)$ for $n>0$.

- $R=\mathbb{K}[X]$
- $R=\mathbb{K}[X] /\left(X^{3}\right)$
- $R=\mathbb{K}[X, Y]$
- $R=\mathbb{K}[X, Y] /(X Y)$


## References

[1] Steffen Oppermann, 2016 Notes in homological algebra https://folk.ntnu.no/opperman/HomAlg. pdf.


[^0]:    ${ }^{1}$ Note that all Hom-spaces in this module category are naturally endowed with a $\mathbb{K}$ module structure...

