MA3204 - Exercise 2

- 1. To understand certain categorical definitions and constructions, it often helps to consider them in the special case of posets. This is what we will do in this exercise. Let (X, \leq) and (Y, \leq) be posets.
 - (a) What is a functor $F: \mathcal{C}_{(X,\leq)} \to \mathcal{C}_{(Y,\leq)}$?
 - (b) Given two functors $F, F' \colon \mathcal{C}_{(X,\leq)} \to \mathcal{C}_{(Y,\leq)}$, what is a natural transformation $F \to F'$?
 - (c) Given two functors $F: \mathcal{C}_{(X,\leq)} \to \mathcal{C}_{(Y,\leq)}$ and $G: \mathcal{C}_{(Y,\leq)} \to \mathcal{C}_{(X,\leq)}$, what does it mean that (F, G) forms an adjoint pair?
 - (d) What is a limit in $\mathcal{C}_{(X,\leq)}$? What about a colimit in $\mathcal{C}_{(X,\leq)}$?
- 2. Finish the proof of the Yoneda Lemma by showing that ζ^x is a natural transformation, and the associations Y and $x \mapsto \zeta^x$ are mutually inverse (see the notes).
- 3. Let X be a set.
 - (a) If X has one element, show that $\operatorname{Hom}_{\operatorname{Set}}(X, -) \colon \operatorname{Set} \to \operatorname{Set}$ is naturally isomorphic to the identity functor.
 - (b) If X has one element, show that $\operatorname{Hom}_{\operatorname{Set}}(-, X)$: Set^{op} \to Set is naturally isomorphic to the constant functor which sends every set to the one-point set.
 - (c) If X has two elements, show that $\operatorname{Hom}_{\operatorname{Set}}(-, X) \colon \operatorname{Set}^{\operatorname{op}} \to \operatorname{Set}$ is naturally isomorphic to the powerset functor \mathcal{P} given by sending a set Y to its set of subsets $\mathcal{P}(Y)$, and sending a map of sets $f \colon Y \to Y'$ to the map

$$\mathcal{P}(f): \mathcal{P}(Y') \to \mathcal{P}(Y) \quad (U \subseteq Y') \mapsto (f^{-1}(U) \subseteq Y)$$

- 4. Finish the proof that a full, faithful and dense functor is an equivalence (see the notes).
- 5. Let **Ab** denote the category of abelian groups. Recall that a torsion abelian group is an abelian group where every element has finite order. In the lecture we defined

$$t \colon \mathbf{Ab} \to \mathbf{Ab}$$

by sending an abelian group M to its largest torsion subgroup t(M), and sending a morphism $M \to N$ to its restriction $t(M) \to t(N)$ to the torsion subgroups.

- (a) Check that t as defined above is well-defined and gives a functor $t: \mathbf{Ab} \to \mathbf{Ab}$.
- (b) Check that the inclusion $t(M) \to M$ gives a natural transformation $t \to \mathrm{Id}_{\mathbf{Ab}}$
- (c) Let \mathcal{T} be the full subcategory of **Ab** consisting of all torsion abelian groups. Show that t gives a functor

$$t \colon \mathbf{Ab} \to \mathcal{T}$$

which is right adjoint to the inclusion functor $\mathcal{T} \to \mathbf{Ab}$.

6. Show that a limit is unique up to unique isomorphism if it exists. More precisely, let \mathcal{I} be a small category, let $D: \mathcal{I} \to \mathcal{C}$ be a functor, and let $(C, (p_i)_{i \in \mathcal{I}})$ and $(C', (p'_i)_{i \in \mathcal{I}})$ be two limits of D. Show that there exists a unique isomorphism $\phi: C \xrightarrow{\cong} C'$ such that the diagram

commutes for all $i \in \mathcal{I}$.

Similarly, colimits are unique up to unique isomorphism.

7. Let \mathcal{I} be a small category, and let \mathcal{C} be any category.

(a) Let $\operatorname{Fun}(\mathcal{I}, \mathcal{C})$ denote the collection of all functors $F \colon \mathcal{I} \to \mathcal{C}$, and for $F, G \in \operatorname{Fun}(\mathcal{I}, \mathcal{C})$ let

 $\operatorname{Hom}_{\operatorname{Fun}(\mathcal{I},\mathcal{C})}(F,G)$

denote the collection of natural transformations $F \to G$. Show that Fun(\mathcal{I}, \mathcal{C}) is a category. This is called the *functor category* from \mathcal{I} to \mathcal{C} . What are the isomorphisms in this category?

- (b) Define $\Delta: \mathcal{C} \to \operatorname{Fun}(\mathcal{I}, \mathcal{C})$ by sending an object $C \in \mathcal{C}$ to the functor $\Delta(C): \mathcal{I} \to \mathcal{C}$ given by $\Delta(C)(i) = C$ for all $i \in \mathcal{I}$ and $\Delta(C)(f) = \operatorname{id}_C$ for all morphisms f in \mathcal{I} . Show that Δ can be made into a functor $\Delta: \mathcal{C} \to \operatorname{Fun}(\mathcal{I}, \mathcal{C})$.
- (c) Let $D: \mathcal{I} \to \mathcal{C}$ be a functor. Show that the following data is the same:
 - A limit $(\underline{\lim} D, (p_i)_{i \in \mathcal{I}})$ of D
 - An object $\varprojlim D$ in \mathcal{C} together with a natural isomorphism

 $\operatorname{Hom}_{\operatorname{Fun}(\mathcal{I},\mathcal{C})}(\Delta(-),D) \cong \operatorname{Hom}_{\mathcal{C}}(-,\underline{\lim} D)$

of functors $\mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$.

Similarly, show that the following data is the same:

- A colimit $(\lim D, (q_i)_{i \in \mathcal{I}})$ of D
- An object $\lim D$ in C together with a natural isomorphism

 $\operatorname{Hom}_{\mathcal{C}}(\underline{\lim} D, -) \cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{I}, \mathcal{C})}(D, \Delta(-))$

of functors $\mathcal{C} \to \mathbf{Set}$.

In particular, C has limits of shape \mathcal{I} if and only if Δ has a right adjoint, and C has colimits of shape \mathcal{I} if and only if Δ has a left adjoint.

- 8. [1, Exercise I.11]. Let A be an abelian group, and S and T two subgroups of A.
 - Show that the pullback in **Ab** of

$$\begin{array}{c} S \\ \downarrow \mathrm{incl} \\ T \xrightarrow{\mathrm{incl}} A \end{array}$$

is given by $S \cap T$.

• Show that the pushout in **Ab** of

$$\begin{array}{c} A \xrightarrow{\mathrm{proj}} A/S \\ \downarrow_{\mathrm{proj}} \\ A/T \end{array}$$

is given by A/(S+T).

Do these results also hold for the category $\operatorname{Mod} R$ of modules over a ring R?

- 9. [1, Exercise I.12] In the category Ab:
 - Show that the pullback

$$\begin{array}{c} L \\ \downarrow \alpha \\ M \xrightarrow{\beta} N \end{array}$$

is given by of $L \prod_N M = \{(l,m) \in L \oplus M \mid \alpha(l) = \beta(m)\}$ with the obvious maps to L and M.

• Show that the pushout of

$$\begin{array}{ccc} L & \stackrel{\beta}{\longrightarrow} & M \\ \downarrow^{\alpha} & \\ N \end{array}$$

is given by $M \coprod_L N = M \oplus N / \{ (\beta(l), -\alpha(l)) | l \in L \}$, with the obvious maps from M and N.

Do these results also hold for the category $\operatorname{Mod} R$ of modules over a ring R?

References

 Steffen Oppermann, 2016 Notes in homological algebra https://folk.ntnu.no/opperman/HomAlg. pdf.