Homological Algebra

Steffen Oppermann

December 16, 2016

Contents

1 Introduction 3
I General categories 5
2 Definition 5
3 Functors 8
4 Natural transformations 10
5 Equivalences of categories 13
6 Adjoint functors 15
7 Limits 18
8 Limits and adjoint functors 21
$9 \quad$ Exercises 23
II Additive and abelian categories 29
10 Additive categories 29
11 Kernels and cokernels 32
12 Abelian categories 33
13 Exact sequences, pullbacks and pushouts 34
14 Some diagram lemmas 40
15 Exercises 48
IIIHom and \otimes 53
16 Hom, projectives and injectives 53
17 Tensor products. 56
18 Hom-tensor adjunction 58
19 Exercises 60
IV Complexes and homology 63
20 The long exact sequence of homology 63
21 Cones and quasi-isomorphisms 66
22 Homotopy 69
23 Projective and injective resolutions 70
24 Exercises 74
V Derived functors 77
25 Definition and first properties 77
26 Syzygies and dimension shift 80
27 Ext 1 and extensions 82
28 Total complexes - balancing Tor and Ext 86
29 Small global dimension 90
30 Exercises 94
VI Triangulated categories 99
31 Motivation - triangles in the homotopy category 99
32 Definition 101
33 Homotopy categories are triangulated 106
34 Derived categories 109
35 Derived functors 118
36 Exercises 123

1 Introduction

Connections

Example 1.1. Let $f: A \longrightarrow B$ be a surjective map, and $g: X \longrightarrow B$ any map.
One may ask if there is a map $h: X \longrightarrow A$ such that $g=f \circ h$.

- If we are just talking about sets, and maps, the answer is "yes": for any $x \in X$ pick a preimage of $g(x)$.
- If we are talking about vector spaces and linear maps the answer is also "yes": find a basis of X, then pick a preimage of $g(x)$ for any basis element x.
- If we are talking about abelian groups and linear maps the answer is "sometimes":
- Let $A=\mathbb{Z} /(4), B=X=\mathbb{Z} /(2)$, and let f be the natural projection and g the identity. Then there is no linear map h such that $g=f \circ h$.
- Let $A=\mathbb{Z} /(6), B=X=\mathbb{Z} /(2)$, and let f be the natural projection and g the identity. Then there is a linear map h such that $g=f \circ h$, given by sending the residue class of 1 to the residue class of 3 .

We will see: The obstruction to finding h is measure by the group Ext ${ }^{1}$. (In the examples above we have $\operatorname{Ext}_{\text {vector spaces }}^{1}=0$, and $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z} /(2) \mathbb{Z} / 3)=0$, but $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z} /(2), \mathbb{Z} /(2)) \neq 0$.

Chapter I

General categories

2 Definition

In many situations in algebra (but also other parts of mathematics) we consider some type of structures, say vector spaces, groups, rings, or similar. Typically these are sets with some additional properties or structure. When studying these kind of situations, there are two basic ingredients: We study the objects having the desired structure themselves, and we study maps between objects which preserve the structure (i.e. linear maps, group homomorphisms, ring homomorphisms, ...). The concept of a category axiomatizes this.

Definition 2.1. A category \mathscr{C} consists of

- a class of objects $\mathcal{O b} \mathscr{C}$;
- for any two objects X and Y a set of morphisms $\operatorname{Hom}_{\mathscr{C}}(X, Y)$;
- for any three objects X, Y, and Z, a multiplication map

$$
\operatorname{Hom}_{\mathscr{C}}(Y, Z) \times \operatorname{Hom}_{\mathscr{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X, Z):(f, g) \longmapsto f \circ g .
$$

such that

- for any object X there is a morphism $\operatorname{id}_{X} \in \operatorname{Hom}_{\mathscr{C}}(X, X)$ such that

$$
\begin{aligned}
& \forall Y \in \mathcal{O b} \mathscr{C} \forall f \in \operatorname{Hom}_{\mathscr{C}}(X, Y): f \circ \operatorname{id}_{X}=f \\
& \forall Y \in \mathcal{O b} \mathscr{C} \forall f \in \operatorname{Hom}_{\mathscr{C}}(Y, X): \operatorname{id}_{X} \circ f=f
\end{aligned}
$$

- multiplication is associative, that is for any objects X, Y, Z, and W and $f \in \operatorname{Hom}_{\mathscr{C}}(X, Y), g \in \operatorname{Hom}_{\mathscr{C}}(Y, Z)$, and $h \in \operatorname{Hom}_{\mathscr{C}}(Z, W)$ we have

$$
(h \circ g) \circ f=h \circ(g \circ f) .
$$

Remark 2.2. Often $\mathrm{Hom}_{\mathscr{C}}$ is just all maps with some additional nice property.
Example 2.3. $\bullet \mathscr{C}=$ Set:
$\mathcal{O b}$ Set $=\{$ sets $\}$, and
$\operatorname{Hom}_{\text {Set }}(X, Y)=\{$ maps form X to $Y\}$.
$\mathscr{C}=\mathbf{G p}:$
$\mathcal{O} \mathbf{G} \mathbf{G p}=\{$ groups $\}$, and
$\operatorname{Hom}_{\mathbf{G p}}(G, H)=\{$ group homomorphisms G to $H\}$.

- $\mathscr{C}=\mathbf{A b}$:
$\mathcal{O b} \mathbf{A b}=\{$ Abelian groups $\}$, and
$\operatorname{Hom}_{\mathbf{A b}}(G, H)=\{$ group homomorphisms G to $H\}$.
- $\mathscr{C}=$ Top:

$$
\begin{aligned}
& \mathcal{O b} \text { Top }=\{\text { topological spaces }\}, \text { and } \\
& \operatorname{Hom}_{\mathbf{T o p}}(X, Y)=\{\text { continuous maps } X \text { to } Y\} .
\end{aligned}
$$

- For a ring $R, \mathscr{C}=\operatorname{Mod} R$:
$\mathcal{O b} \operatorname{Mod} R=\{$ right R-modules $\}$, and
$\operatorname{Hom}_{\operatorname{Mod} R}(M, N)=\{R$-module homomorphisms M to $N\}$.
- For a $\operatorname{ring} R, \mathscr{C}=\bmod R$:
$\mathcal{O b} \bmod R=\{$ finitely generated right R-modules $\}$, and
$\operatorname{Hom}_{\bmod R}(M, N)=\operatorname{Hom}_{\operatorname{Mod} R}(M, N)$.
Observation 2.4. For a category \mathscr{C}, one can define the opposite category $\mathscr{C}^{\text {op }}$ by $\mathcal{O b} \mathscr{C}^{\text {op }}=\mathcal{O b} \mathscr{C}$, and $\operatorname{Hom}_{\mathscr{C}}^{\text {op }}(X, Y)=\operatorname{Hom}_{\mathscr{C}}(Y, X)$, together with the multiplication rule $f \circ_{\mathscr{C} \text { op }} g=g \circ_{\mathscr{C}} f$.

One simple toy example of categories is the following
Construction 2.5. Let (X, \leqslant) be a poset. The poset category $\mathscr{C}_{(X, \leqslant)}$ is defined by

$$
\begin{aligned}
& \mathcal{O} \mathscr{C}_{(X, \leqslant)}=X, \text { and } \\
& \operatorname{Hom}_{\mathscr{C}_{(X, \leqslant)}}(x, y)= \begin{cases}\left\{\iota_{x}^{y}\right\} & \text { if } x \leqslant y \\
\emptyset & \text { otherwise }\end{cases}
\end{aligned}
$$

where $\iota_{y}^{z} \circ \iota_{x}^{y}=\iota_{x}^{z}$ whenever $x \leqslant y \leqslant z$.
More generally, this construction works for a preordered set, that is a set with an order that is not necessarily anti-symmetric.

Definition 2.6. A subcategory \mathscr{S} of a category \mathscr{C} consist of

- A subclass $\mathcal{O b} \mathscr{S}$ of $\mathcal{O b} \mathscr{C}$;
- for every $S, T \in \mathcal{O b} \mathscr{S}$, a subset $\operatorname{Hom}_{\mathscr{S}}(S, T) \subseteq \operatorname{Hom}_{\mathscr{C}}(S, T)$;
such that the identity on any object in \mathscr{S} is a morphism in \mathscr{S}, and compositions of morphisms in \mathscr{S} are morphisms in \mathscr{S} again.

The subcategory $\mathscr{S} \subseteq \mathscr{C}$ is called full if for all $S, T \in \mathcal{O b} \mathscr{S}, \operatorname{Hom}_{\mathscr{S}}(S, T)=$ $\operatorname{Hom}_{\mathscr{C}}(S, T)$.

Example 2.7. - Ab is a full subcategory of Gp.

- For a poset (X, \leqslant), and $Y \subseteq X$ with induced poset structure, the poset category $\mathscr{C}_{(Y, \leqslant)}$ is a full subcategory of $\mathscr{C}_{(X, \leqslant)}$.
Definition 2.8. A morphism $f \in \operatorname{Hom}_{\mathscr{C}}(X, Y)$ is called
- monomorphism, if for any W and any $g, h \in \operatorname{Hom}_{\mathscr{C}}(W, X)$ such that $f \circ g=f \circ h$ we have $g=h$;
- epimorphism if for any Z and any $g, h \in \operatorname{Hom}_{\mathscr{C}}(Y, Z)$ such that $g \circ f=h \circ f$ we have $g=h$;
- split monomorphism (also called section) if there is $g \in \operatorname{Hom}_{\mathscr{C}}(Y, X)$ such that $g \circ f=\operatorname{id}_{X}$;
- split epimorphism (also called retraction) if there is $g \in \operatorname{Hom}_{\mathscr{C}}(Y, X)$ such that $f \circ g=\mathrm{id}_{Y}$;
- isomorphism if there is $g \in \operatorname{Hom}_{\mathscr{C}}(Y, X)$ such that $g \circ f=\mathrm{id}_{X}$ and $f \circ g=\mathrm{id}_{Y}$.

As the names suggest, split monomorphisms (split epimorphisms) are in fact special monomorphsims (epimorphisms). See Exercise I. 3

We often denote monomorphisms by arrows \longrightarrow, and epimorphisms by arrows \rightarrow.

Example 2.9. - In Set: monomorphism are split monomorphisms are injective maps; epimorphisms are split epimorphisms are surjective maps; isomorphisms are bijective maps.

- For a poset (X, \leqslant), all morphisms in the poset category $\mathscr{C}_{(X, \leqslant)}$ are both mono- and epimorphisms. However, only identities are split monomorphisms or split epimorphisms.

In particular being a mono- and an epimorphism does not imply being an isomorphism.

3 Functors

Definition 3.1. Let \mathscr{C} and \mathscr{D} be categories. A covariant functor F from \mathscr{C} to \mathscr{D} consists of

- a map $\mathcal{O} \mathscr{C} \longrightarrow \mathcal{O b} \mathscr{D}: X \mapsto \mathrm{~F} X$, and
- for any $X, Y \in \mathcal{O b}_{\mathscr{C}} \mathscr{C}$, a map $\operatorname{Hom}_{\mathscr{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(\mathrm{F} X, F Y)$, also denoted by F,
such that
- for any $X \in \mathcal{O} \mathfrak{C} \mathscr{C}$ we have $\mathrm{Fid}_{X}=\operatorname{id}_{\mathrm{F} X}$, and
- for any composable morphisms f and g in \mathscr{C} we have $\mathrm{F}(g \circ f)=\mathrm{F} g \circ \mathrm{~F} f$.

A contravariant functor from \mathscr{C} to \mathscr{D} is a covariant functor from $\mathscr{C}^{\text {op }}$ to \mathscr{D}. In other words, it consists of maps $\operatorname{Hom}_{\mathscr{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(F Y, F X)$, and the composition rule is $\mathrm{F}(g \circ f)=\mathrm{F} f \circ \mathrm{~F} g$.

Example 3.2. - Let \mathscr{S} be a subcategory of \mathscr{C}. Then inclusion $\mathscr{S} \hookrightarrow \mathscr{C}$ is a (covariant) functor.

- Let \mathscr{C} be a category, and X be an object. Then $\operatorname{Hom}_{\mathscr{C}}(X,-)$ defines a functor from \mathscr{C} to Set: For any object $Y \in \mathcal{O} \mathscr{C}$, we obtain a set $\operatorname{Hom}_{\mathscr{C}}(X, Y)$ by definition of category. For a morphism $f \in \operatorname{Hom}_{\mathscr{C}}\left(Y_{1}, Y_{2}\right)$ we define $\operatorname{Hom}_{\mathscr{C}}(X, f)$ by

$$
\operatorname{Hom}_{\mathscr{C}}(X, f): \operatorname{Hom}_{\mathscr{C}}\left(X, Y_{1}\right) \longrightarrow \operatorname{Hom}_{\mathscr{C}}\left(X, Y_{2}\right): g \longmapsto f \circ g
$$

This functor is called the covariant Hom-functor.

- Similarly one defines the contravariant $\operatorname{Hom}^{\text {-functor }} \operatorname{Hom}_{\mathscr{C}}(-, X)$.
- For two posets (X, \leqslant) and (Y, \leqslant), a functor between the poset categories is given by an order-preserving map $X \longrightarrow Y$.
- Forming fundamental groups gives a functor $\mathbf{T o p}_{*} \longrightarrow \mathbf{G p}$ from pointed topological spaces to groups.

Definition 3.3. A functor $\mathrm{F}: \mathscr{C} \longrightarrow \mathscr{D}$ is called

- faithful if for any $X, Y \in \mathcal{O b} \mathscr{C}$ the map $\operatorname{Hom}_{\mathscr{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(\mathrm{F} X, F Y)$ is injective;
- full if for any $X, Y \in \mathcal{O} \mathfrak{C}$ the map $\operatorname{Hom}_{\mathscr{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(\mathrm{F} X, \mathrm{~F} Y)$ is surjective;
- dense if for any $D \in \mathcal{O b} \mathscr{D}$ there is $C \in \mathcal{O} \mathfrak{C}$ such that $D \cong \mathrm{FC}$.

Example 3.4. - For an order preserving map f between two posets X and Y, the associated functor between the poset categories is always faithful. It is full if the images of two points are only comparable in Y if the two points already were comparable in X. It is dense if and only if the map is surjective.

- The forgetful functor $\mathbf{G p} \longrightarrow$ Set is faithful, but neither full nor dense.

Definition 3.5. Let \mathscr{X} and \mathscr{C} be categories. A \mathscr{C}-valued presheaf on \mathscr{X} is a functor

$$
\mathscr{X}^{\mathrm{op}} \longrightarrow \mathscr{C}
$$

We denote by presh $_{\mathscr{C}} \mathscr{X}$ the collection of all \mathscr{C}-valued presheaves on \mathscr{X}.
By abuse of notation, for a poset (X, \leqslant), we say a presheaf on (X, \leqslant) is a presheaf on the poset category $\mathscr{C}_{(X, \leqslant)}$.

More explicitly, a \mathscr{C}-valued presheaf F on a poset (X, \leqslant) consist of

- for every $x \in X$, an object $F_{x} \in \mathcal{O b}_{\mathscr{C}}$;
- for every $x, y \in X$, such that $x \leqslant y$, a morphism $\operatorname{res}_{x}^{y} \in \operatorname{Hom}_{\mathscr{C}}\left(F_{y}, F_{x}\right)$; such that $\operatorname{res}_{x}^{x}=\operatorname{id}_{F_{x}}$, and $\operatorname{res}_{x}^{y} \circ \operatorname{res}_{y}^{z}=\operatorname{res}_{x}^{z}$, whenever $x \leqslant y \leqslant z$.
Remark 3.6. Depending on the setup, and preferences of different authors, various different notations are being used in the literature. These include $\operatorname{Fun}\left(\mathscr{X}^{\mathrm{op}}, \mathscr{C}\right)$, and, in partticular in the case of posets, "representations of \mathscr{X} in \mathscr{C} ".

This name "presheaves" which we will use here originates in the following example.

Example 3.7. Let T be a topological space, and X the set of open subsets of T. Then X is a poset with inclusion as partial order. Let S be a set (possibly with some extra structure, for instance $S=\mathbb{R}$ or $S=\mathbb{C}$).

Then we obtain a Set-valued presheaf F on X by setting $F(U)$ to be all (nice) functions from U to S. Here the restriction morphisms are restriction of functions to a smaller open subset of T.

4 Natural transformations

Definition 4.1. Let \mathscr{C} and \mathscr{D} be categories, and F and G be functors from \mathscr{C} to \mathscr{D}. A natural transformation η from F to G consists of

- for every $C \in \mathcal{O} \mathfrak{C} \mathscr{C}$ a morphism $\eta_{C} \in \operatorname{Hom}_{\mathscr{D}}(\mathrm{F} C, \mathrm{G} C)$, such that for any morphism $f \in \operatorname{Hom}_{\mathscr{C}}\left(C_{1}, C_{2}\right)$ we have

$$
\eta_{C_{2}} \circ \mathrm{~F} f=\mathrm{G} f \circ \eta_{C_{1}},
$$

that is the following diagram commutes in \mathscr{D} :

A natural transformation η is called natural isomorphism if all the η_{C} are isomorphisms in \mathscr{D}.

Example 4.2. Let R be a ring. We denote by $-^{*}=\operatorname{Hom}_{R}(-, R)$ the duality $\operatorname{Mod} R \longrightarrow \operatorname{Mod} R^{\mathrm{op}}$ with respect to the ring. Then $-{ }^{* *}$ defines a functor $\operatorname{Mod} R \longrightarrow \operatorname{Mod} R$, and we have a natural transformation given by evaluation:

$$
\begin{aligned}
& \text { ev: } \operatorname{id}_{\operatorname{Mod} R} \longrightarrow-^{* *} \\
& \operatorname{ev}_{M}(m)=\left[M^{*} \ni \phi \longmapsto \phi(m) \in R\right] \in \operatorname{Hom}_{R}\left(M^{*}, R\right) .
\end{aligned}
$$

For $R=\mathbb{F}$ a field, we note that $-{ }^{* *}$ also defines a functor $\bmod \mathbb{F} \longrightarrow \bmod \mathbb{F}$ between the categories of finite dimensional modules, and the induced natural transformation

$$
\mathrm{ev}: \mathrm{id}_{\bmod \mathbb{F}} \longrightarrow-^{* *}
$$

is a natural isomorphism.
Observation 4.3. Let \mathscr{X} be a category, such that the objects form a set. (Such a category is called small.)

Then, for an arbitrary category \mathscr{C} and functors $\mathrm{F}, \mathrm{G}: \mathscr{X} \longrightarrow \mathscr{C}$ the collection of natural transformations from F to G forms a set. (In fact, it is a subset of $x_{X \in \mathcal{O} \mathfrak{X}} \operatorname{Hom}_{\mathscr{C}}(\mathrm{F} X, \mathrm{G} X)$.)

Thus, for a small category \mathscr{X}, the \mathscr{C}-valued presheaves on \mathscr{X} form a category, with

$$
\operatorname{Hom}_{\text {presh }}^{\mathscr{C}} ⿵ 冂\left(F_{1}, F_{2}\right)=\left\{\text { natural transformations } F_{1} \longrightarrow F_{2}\right\} .
$$

Obviously natural isomorphisms are precisely the isomorphisms in $\operatorname{presh}_{\mathscr{C}} \mathscr{X}$.
Example 4.4. Let (X, \leqslant) be a poset, \mathscr{C} a category, and F_{1} and $F_{2} \mathscr{C}$-valued presheaves on X.

A morphism $f: F_{1} \longrightarrow F_{2}$ consists of morphisms $f_{x}:\left(F_{1}\right)_{x} \longrightarrow\left(F_{2}\right)_{x}$ for any $x \in X$, such that $\operatorname{res}_{x}^{y} \circ f_{y}=f_{x} \circ \operatorname{res}_{x}^{y}$ whenever $x \leqslant y$. (Note that here the left restriction refers to the structure of F_{2}, while the right restriction comes from the structure of F_{1}.)

Example 4.5. - Let $X=\{1\}$ be the poset with just one element. Then $\operatorname{presh}_{\mathscr{C}} X=\mathscr{C}$.

- Let $X=\{1 \leqslant 2\}$ be the poset with two comparable elements. Then the objects of presh $_{\mathscr{C}} X$ are morphisms in \mathscr{C}, and morphisms of presheaves are pairs of morphisms between domains and codomains, such that the resulting square commutes.
- Let X be the poset given by the Hasse diagram

The objects of $\operatorname{presh}_{\mathscr{C}} X$ are commutative squares in \mathscr{C}. (Note that we don't need to specify res ${ }_{0}^{\omega}$, since $\operatorname{res}_{0}^{\omega}=\operatorname{res}_{0}^{a} \circ \operatorname{res}_{a}^{\omega}=\operatorname{res}_{0}^{b} \circ \operatorname{res}^{\omega_{b}}$.)

Theorem 4.6 (Yoneda Lemma). Let \mathscr{C} be a category, $C \in \mathcal{O} \mathscr{C}$, and F a functor $\mathscr{C} \longrightarrow$ Set. Then the map

$$
\begin{aligned}
Y:\left\{\text { natural transformations } \operatorname{Hom}_{\mathscr{C}}(C,-) \longrightarrow \mathrm{F}\right\} & \longrightarrow \mathrm{F} C \\
& \longmapsto \eta_{C}\left(\mathrm{id}_{C}\right)
\end{aligned}
$$

is a bijection. In particular the natural transformations from $\operatorname{Hom}_{\mathscr{C}}(C,-)$ to F form a set.

Proof. We construct a map in the opposite direction. That is, given an element $x \in \mathrm{FC}$, we construct a natural transformation $\zeta^{x}: \operatorname{Hom}_{\mathscr{C}}(C,-) \longrightarrow \mathrm{F}$. For $D \in \mathcal{O} \mathscr{C}$ we set

$$
\zeta_{D}^{x}: \operatorname{Hom}_{\mathscr{C}}(C, D) \longrightarrow \mathrm{F} D: f \longmapsto(\mathrm{~F} f)(x) .
$$

(Note that $\mathrm{F} f \in \operatorname{Hom}_{\mathrm{Set}}(\mathrm{FC}, \mathrm{FD})$, so this makes sense.)
Let us first check that ζ^{x} is a natural transformation. Let $g \in \operatorname{Hom}_{\mathscr{C}}\left(D_{1}, \mathrm{D}_{2}\right)$. We have

$$
\begin{aligned}
\zeta_{D_{2}}^{x} \circ \operatorname{Hom}_{\mathscr{C}}(C, g) & =[f \longmapsto(\mathrm{~F} f)(x)] \circ[f \longmapsto g \circ f] \\
& =[f \longmapsto(\mathrm{~F}(g \circ f))(x)] \\
& =\mathrm{F}(g) \circ[f \longmapsto(\mathrm{~F} f)(x)] \\
& =\mathrm{F}(g) \circ \zeta_{D_{1}}^{x}
\end{aligned}
$$

We immediately see that

$$
Y\left(\zeta^{x}\right)=\zeta_{C}^{x}\left(\operatorname{id}_{C}\right)=\left(\mathrm{Fid}_{C}\right)(x)=\operatorname{id}_{\mathrm{F} C} x=x
$$

It remains to see that for any natural transformation $\eta: \operatorname{Hom}_{\mathscr{C}}(C,-) \longrightarrow \mathrm{F}$
we have $\eta=\zeta^{Y(\eta)}$. So Let $D \in \mathcal{O} \mathfrak{C}$. Then

$$
\begin{aligned}
\zeta_{D}^{Y(\eta)} & =[f \longmapsto(\mathrm{~F} f)(Y \eta)] \\
& =\left[f \longmapsto\left(\mathrm{~F} f \circ \eta_{C}\right)\left(\mathrm{id}_{C}\right)\right] \\
& =\left[f \longmapsto\left(\eta_{D} \circ \operatorname{Hom}_{\mathscr{C}}(C, f)\right)\left(\mathrm{id}_{C}\right)\right] \quad(\eta \text { is a natural transformation }) \\
& =\left[f \longmapsto \eta_{D}(f)\right] \\
& =\eta_{D} .
\end{aligned}
$$

Corollary 4.7 (Yoneda embedding). Let \mathscr{X} be a small category. Then the functor

$$
\mathrm{Y}: \mathscr{X} \longrightarrow \operatorname{presh}_{\text {Set }} \mathscr{X}: X \longmapsto \operatorname{Hom}_{\mathscr{X}}(-, X)
$$

is fully faithful.

5 Equivalences of categories

Definition 5.1. A functor $\mathrm{F}: \mathscr{C} \longrightarrow \mathscr{D}$ is called an equivalence if there is a functor $\mathrm{G}: \mathscr{D} \longrightarrow \mathscr{C}$ such that $\mathrm{F} \circ \mathrm{G} \underset{\text { nat }}{\cong} \mathrm{id}_{\mathscr{D}}$ and $\mathrm{G} \circ \mathrm{F} \underset{\text { nat }}{\cong} \mathrm{id}_{\mathscr{C}}$.

Theorem 5.2. A functor $\mathrm{F}: \mathscr{C} \longrightarrow \mathscr{D}$ is an equivalence if and only if it is full, faithful, and dense.

Proof. Assume first that F is an equivalence, and let G as in the definition.
Let $\eta: \mathrm{G} \circ \mathrm{F} \longrightarrow \mathrm{id}_{\mathscr{C}}$ be a natural isomorphism. Then for any morphism $f \in \operatorname{Hom}_{\mathscr{C}}\left(C_{1}, C_{2}\right)$ we have the commutative square

Thus $f=\eta_{C_{2}} \circ \mathrm{GF} f \circ \eta_{C_{1}}^{-1}$ is uniquely determined by $\mathrm{F} f$. That is F is faithful.
Let ζ ba a natural isomorphism $\mathrm{F} \circ \mathrm{G} \longrightarrow \mathrm{id}_{\mathscr{D}}$. In particular for any $D \in \mathcal{O b} \mathscr{D}$ we have an isomorphism $\zeta_{D}: \operatorname{FG} D \longrightarrow D$, showing that F is dense.

To see that F is full, let $f \in \operatorname{Hom}_{\mathscr{D}}\left(\mathrm{F}_{1}, \mathrm{~F} C_{2}\right)$. Using the natural isomorphisms η and ζ as above, we construct the commutative diagram

where g and h are the unique maps making the squares commutative. By naturality of ζ we know that $g=\mathrm{FG} h$, and thus the commutativity of the left hand square gives us that

$$
\begin{aligned}
f & =\mathrm{F} \eta_{C_{2}} \circ \mathrm{FG} h \circ\left(\mathrm{~F} \eta_{C_{1}}\right)^{-1} \\
& =\mathrm{F}\left(\eta_{C_{2}} \circ \mathrm{G} h \circ \eta_{C_{1}}^{-1}\right)
\end{aligned}
$$

showing that f is in the image of F .
Now assume conversely that F is full, faithful, and dense. By (a strong version of) the axiom of choice, and since F is dense, we may fix, for any $D \in$ $\mathcal{O b}_{\mathscr{D}}$, an object $\mathrm{G} D$ in \mathscr{C} and an isomorphism $\zeta_{D}: \mathrm{FG} D \longrightarrow D$. For a morphism $f \in \operatorname{Hom}_{\mathscr{D}}\left(D_{1}, D_{2}\right)$ we use the bijection

$$
\operatorname{Hom}_{\mathscr{C}}\left(\mathrm{G} D_{1}, \mathrm{G} D_{2}\right) \longrightarrow \operatorname{Hom}_{\mathscr{D}}\left(\mathrm{FG} D_{1}, \mathrm{FG} D_{2}\right)
$$

induced by F (since it is full and faithful), and define $\mathrm{G} f$ to be the preimage of $\zeta_{D_{2}}^{-1} \circ f \circ \zeta_{D_{1}}$.

We claim that the above makes G a functor from \mathscr{D} to \mathscr{C}. Firstly we have

$$
\mathrm{Gid}_{D}=\mathrm{F}^{-1}\left(\zeta_{D}^{-1} \circ \operatorname{id}_{D} \circ \zeta_{D}\right)=\mathrm{F}^{-1}\left(\mathrm{id}_{\mathrm{FG} D}\right)=\mathrm{id}_{G D}
$$

Secondly, for morphisms $D_{1} \xrightarrow{f} D_{2} \xrightarrow{g} D_{3}$,

$$
\begin{aligned}
\mathrm{G}(g \circ f) & =\mathrm{F}^{-1}\left(\zeta_{D_{3}}^{-1} \circ g \circ f \circ \zeta_{D_{1}}\right)=\mathrm{F}^{-1}\left(\zeta_{D_{3}}^{-1} \circ g \circ \zeta_{D_{2}} \circ \zeta_{D_{2}}^{-1} \circ f \circ \zeta_{D_{1}}\right) \\
& =\mathrm{F}^{-1}\left(\zeta_{D_{3}}^{-1} \circ g \circ \zeta_{D_{2}}\right) \circ \mathrm{F}^{-1}\left(\zeta_{D_{2}}^{-1} \circ f \circ \zeta_{D_{1}}\right)=\mathrm{G} g \circ \mathrm{G} f .
\end{aligned}
$$

Next we claim that ζ defines a natural isomorphism $\mathrm{F} \circ \mathrm{G} \longrightarrow \mathrm{id}_{\mathscr{D}}$. Let $f \in$ $\operatorname{Hom}_{\mathscr{D}}\left(D_{1}, D_{2}\right)$. Then

$$
\zeta_{D_{2}} \circ \mathrm{FG} f=\zeta_{D_{2}} \circ \zeta_{D_{2}}^{-1} \circ f \circ \zeta_{D_{1}}=f \circ \zeta_{D_{1}} .
$$

Finally, we construct a natural isomorphism $\eta: \mathrm{G} \circ \mathrm{F} \longrightarrow \mathrm{id} \mathscr{C}_{\mathscr{C}}$. First note that ζ induces mutually inverse natural isomorphisms

$$
\zeta_{\mathrm{F}-}: \mathrm{F} \circ \mathrm{G} \circ \mathrm{~F} \longrightarrow \mathrm{~F} \text { and } \zeta_{\mathrm{F}-}^{-1}: \mathrm{F} \longrightarrow \mathrm{~F} \circ \mathrm{G} \circ \mathrm{~F} .
$$

Since F is fully faithful, we can find unique morphisms $\eta_{C}: \mathrm{GF} C \longrightarrow C$ and $\eta_{C}^{-}: C \longrightarrow \mathrm{GF} C$ such that

$$
\zeta_{\mathrm{FC}}=F \eta_{C} \text { and } \zeta_{\mathrm{FC}}^{-1}=F \eta_{C}^{-}
$$

If follows that η is a natural transformation, with inverse η^{-}.
Example 5.3. Let \mathbb{F} be a field.
Let $\mathrm{Mat}_{\mathbb{F}}$ be the category given by

$$
\begin{aligned}
& \mathcal{O b ~ M a t}{ }_{\mathbb{F}}=\mathbb{N}_{0} \text {, and } \\
& \operatorname{Hom}_{\text {Mat }}(m, n)=\{n \times m \text {-matrices over } \mathbb{F}\}
\end{aligned}
$$

with matrix multiplication.
Let $\bmod \mathbb{F}$ be the category of finite dimensional \mathbb{F}-vector spaces, with \mathbb{F} vector space homomorphisms as morphisms.

Then the natural functor $\mathrm{Mat}_{\mathbb{F}} \longrightarrow \bmod \mathbb{F}$ sending n to \mathbb{F}^{n} is an equivalence.
We observe that constructing an equivalence in the other direction amounts to choosing a basis for every finite dimensional \mathbb{F}-vector space.

6 Adjoint functors

Definition 6.1. Let \mathscr{C} and \mathscr{D} be categories, and $\mathrm{F}: \mathscr{C} \longrightarrow \mathscr{D}$ and $\mathrm{G}: \mathscr{D} \longrightarrow \mathscr{C}$ functors. We say that (F, G) is an adjoint pair if the functors

$$
\operatorname{Hom}_{\mathscr{D}}(\mathrm{F}-,-) \text { and } \operatorname{Hom}_{\mathscr{C}}(-, \mathrm{G}-): \mathscr{C}^{\mathrm{op}} \times \mathscr{D} \longrightarrow \text { Set }
$$

are naturally isomorphic.
Example 6.2. Let (X, \leqslant) be a poset, and \mathscr{C} a category. For $x \in X$ we have a natural projection functor

$$
\pi_{x}: \operatorname{presh}_{\mathscr{C}} X \longrightarrow \mathscr{C}: F \longmapsto F_{x}
$$

We may also consider the diagonal functor $\Delta: \mathscr{C} \longrightarrow \operatorname{presh}_{\mathscr{C}} X$ given by $\Delta(C)_{x}=C$ for any $x \in X$, and $\operatorname{res}_{y}^{x}=\operatorname{id}_{C}$ for any $y \leqslant x$.

If (X, \leqslant) has a smallest element 0 , then $\left(\pi_{0}, \Delta\right)$ is an adjoint pair. Similarly, if there is a largest element ω, then $\left(\Delta, \pi_{\omega}\right)$ is an adjoint pair.

Example 6.3 (Free modules). Let R be a ring. Then we have the forgetful functor $\mathrm{f}: \operatorname{Mod} R \longrightarrow$ Set.

We construct a left adjoint $R^{(-)}: \operatorname{Set} \longrightarrow \operatorname{Mod} R:$ For a set X,
$R^{(X)}=\{$ functions $f: X \longrightarrow R \mid f(x) \neq 0$ for only finitely many $x \in X\}$.
For a map $\varphi: X \longrightarrow Y$ we set

$$
R^{(\varphi)}: R^{(X)} \longrightarrow R^{(Y)}: f \longmapsto\left[y \longmapsto \sum_{x \in \varphi^{-1}(y)} f(x)\right] .
$$

We claim that $R^{(-)}$is left adjoint to f .
For $x \in X$, we let

$$
\chi_{x}: X \longrightarrow R: y \longmapsto\left\{\begin{array}{ll}
1 & \text { if } y=x \\
0 & \text { if } y \neq x
\end{array} .\right.
$$

Then $\chi_{x} \in R^{(X)}$.
Now we can define the mutually inverse natural transformations by

$$
\begin{aligned}
\operatorname{Hom}_{\text {Set }}(X, \mathrm{f} M) & \longleftrightarrow \operatorname{Hom}_{R}\left(R^{(X)}, M\right) \\
\varphi & \longmapsto\left[f \longmapsto \sum_{x \in X} \varphi(x) \cdot f(x)\right] \\
{\left[x \longmapsto \psi\left(\chi_{x}\right)\right] } & \longleftrightarrow \psi
\end{aligned}
$$

(Note that the sum in the second line is finite, since $f(x)=0$ for almost all $x \in X$.)

Example 6.4. Consider the forgetful functor $f: \mathbf{A b} \longrightarrow \mathbf{G p}$. This functor has a left adjoint, given by forming commutator factor groups.

Proposition 6.5 (Unit-counit adjunction). Let $\mathrm{F}: \mathscr{C} \longrightarrow \mathscr{D}$ and $\mathrm{G}: \mathscr{D} \longrightarrow \mathscr{C}$ be two functors. Then the following are equivalent:

1. (F, G) is an adjoint pair.
2. there are natural transformations $\eta: \mathrm{id}_{\mathscr{C}} \longrightarrow \mathrm{G} \circ \mathrm{F}$ and $\varepsilon: \mathrm{F} \circ \mathrm{G} \longrightarrow \mathrm{id}_{\mathscr{D}}$ (called unit and counit, respectively), such that

$$
\mathrm{id}_{\mathrm{F}}=\varepsilon_{\mathrm{F}-} \circ \mathrm{F} \eta \text { and } \mathrm{id}_{\mathrm{G}}=\mathrm{G} \varepsilon \circ \eta_{\mathrm{G}-},
$$

i.e. for any $C \in \mathcal{O b}_{\mathscr{C}}$ and $D \in \mathcal{O b}_{\mathscr{D}}$

$$
\operatorname{id}_{\mathrm{F} C}=\varepsilon_{\mathrm{F} C} \circ \mathrm{~F} \eta_{C} \text { and } \mathrm{id}_{\mathrm{G} D}=\mathrm{G} \varepsilon_{D} \circ \eta_{\mathrm{G} D} .
$$

Proof. Let $\alpha: \operatorname{Hom}_{\mathscr{D}}(\mathrm{F}-,-) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(-, \mathrm{G}-)$ be a natural transformation.
Then we may define a natural transformation $\eta: \mathrm{id}_{\mathscr{C}} \longrightarrow \mathrm{G} \circ \mathrm{F}$ by

$$
\eta_{C}=\alpha_{C, \mathrm{~F} C}\left(\mathrm{id}_{\mathrm{F} C}\right)
$$

To check that this defines a natural transformation, note that for a morphism $f \in \operatorname{Hom}_{\mathscr{C}}\left(C_{1}, C_{2}\right)$ we have

$$
\begin{aligned}
& \mathrm{GF} f \circ \eta_{C_{1}}=\mathrm{GF} f \circ \alpha_{C_{1}, \mathrm{~F} C_{1}}\left(\mathrm{id}_{\mathrm{FC}_{1}}\right) \\
& =\alpha_{C_{1}, \mathrm{FC}_{2}}(\mathrm{~F} f) \\
& =\alpha_{C_{2}, \mathrm{FC}_{2}}\left(\mathrm{id}_{\mathrm{FC}_{2}}\right) \circ f \\
& =\eta_{C_{2}} \circ f \text {, }
\end{aligned}
$$

where the middle two equalities follow from the naturality of α in the second and first argument, respectively.

Conversely, given a natural transformation $\eta: \mathrm{id}_{\mathscr{C}} \longrightarrow \mathrm{G} \circ \mathrm{F}$ we can define a natural transformation $\alpha: \operatorname{Hom}_{\mathscr{D}}(\mathrm{F}-,-) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(-, \mathrm{G}-)$ by

$$
\alpha_{C, D}(f)=\mathrm{G}(f) \circ \eta_{C} .
$$

It is immediately checked that these two constructions are mutually inverse.
Similarly, we obtain a bijection between natural transformations

$$
\beta: \operatorname{Hom}_{\mathscr{C}}(-, \mathrm{G}-) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(\mathrm{F}-,-) \text { and } \varepsilon: \mathrm{F} \circ \mathrm{G} \longrightarrow \mathrm{id}_{\mathscr{D}},
$$

sending β to the natural transformation given by $\varepsilon_{D}=\beta_{G D, D}\left(\mathrm{id}_{G D}\right)$.
Now let α and η and β and ε correspond to each other as above. Then

$$
\begin{aligned}
& \beta \circ \alpha=\operatorname{id}_{\mathrm{Hom}_{\mathscr{\mathscr { F }}}(\mathrm{F}-,-)} \\
\Longleftrightarrow & \forall C \in \mathcal{O} \mathfrak{C} \forall D \in \mathcal{O b} \mathscr{D}: \beta_{C, D} \circ \alpha_{C, D}=\operatorname{id}_{\mathrm{Hom}_{\mathscr{D}}(\mathrm{F} C, D)}
\end{aligned}
$$

Moreover, since any morphism from FC to D is a multiple of $\mathrm{id}_{\mathrm{F} C}$

$$
\Longleftrightarrow \forall C \in \mathcal{O} \mathfrak{b} \mathscr{C}: \beta_{C, \mathrm{~F} C} \circ \alpha_{C, \mathrm{~F} C}\left(\mathrm{id}_{\mathrm{F} C}\right)=\mathrm{id}_{\mathrm{F} C}
$$

and, inserting $\alpha_{C, \mathrm{~F} C}\left(\mathrm{id}_{\mathrm{F} C}\right)=\mathrm{G}\left(\mathrm{id}_{\mathrm{F} C}\right) \circ \eta_{C}=\eta_{C}$, and $\beta_{C, \mathrm{~F} C}\left(\eta_{C}\right)=\varepsilon_{\mathrm{F} C} \circ \mathrm{~F}\left(\eta_{C}\right)$, we obtain

$$
\begin{aligned}
& \Longleftrightarrow \forall C \in \mathcal{O b} \mathscr{C}: \varepsilon_{\mathrm{F} C} \circ \mathrm{~F}\left(\eta_{C}\right)=\mathrm{id}_{\mathrm{F} C} \\
& \Longleftrightarrow \varepsilon_{\mathrm{F}-} \circ \mathrm{F} \eta=\mathrm{id}_{\mathrm{F}} .
\end{aligned}
$$

Similarly one can see that $\alpha \circ \beta=\operatorname{id}_{\mathrm{Hom}_{\mathscr{E}(-, \mathrm{G}-)}}$ if and only if $\mathrm{G} \varepsilon \circ \eta_{\mathrm{G}-}=$ id_{G}.

7 Limits

Definition 7.1. Let \mathscr{X} be a small category (which we think of as indices, in some sense), and \mathscr{C} an arbitrary category. We denote by Δ the functor

$$
\Delta: \mathscr{C} \longrightarrow \operatorname{presh}_{\mathscr{C}} \mathscr{X}: C \longmapsto \Delta C,
$$

where ΔC is the functor sending any object of \mathscr{X} to C, and any morphism to id_{C}.

Let $F \in \mathcal{O} \mathfrak{p} \operatorname{presh}_{\mathscr{C}} \mathscr{X}$.
 together with a natural isomorphism

$$
\operatorname{Hom}_{\mathscr{C}}\left(-, \varliminf_{\longleftarrow} F\right) \cong \operatorname{Hom}_{\text {presh }_{\mathscr{C}}} \mathscr{X}(\Delta-, F)
$$

of functors $\mathscr{C}^{\mathrm{op}} \longrightarrow$ Set;

- a colimit (or direct limit, injective limit) of F is an object $\underset{\longrightarrow}{\lim } F \in \mathcal{O b} \mathscr{C}$, together with a natural isomorphism

$$
\operatorname{Hom}_{\mathscr{C}}\left(\underset{\longrightarrow}{\lim _{\longrightarrow}} F,-\right) \cong \operatorname{Hom}_{\text {presh }_{\mathscr{C}}} \mathscr{X}(F, \Delta-)
$$

of functors $\mathscr{C} \longrightarrow$ Set.
Observation 7.2. Note that a limit of F can equivalently be characterized as an object $\underset{\rightleftarrows}{\lim } F \in \mathcal{O b} \mathscr{C}$, together with morphisms $\varphi_{x}: \underset{\rightleftarrows}{\lim } F \longrightarrow F_{x}$ such that
$f \circ \varphi_{x}=\varphi_{y}$ for any $f: x \longrightarrow y \in \mathscr{X}$, which is universal in the following sense: for any other object C, together with maps $\psi_{x}: C \longrightarrow F_{x}$ such that $f \circ \psi_{x}=\psi_{y}$ for any $f: x \longrightarrow y \in \mathscr{X}$ there is a unique map $\Psi: C \longrightarrow \lim F$ such that $\psi_{x}=\varphi_{x} \circ \Psi$ for all $x \in \mathcal{O b} \mathscr{X}$.

The dual description holds for colimits.
Proposition 7.3. Let $F \in \mathcal{O} \operatorname{presh}_{\mathscr{C}} \mathscr{X}$ as above. If a limit $\varliminf_{\varliminf} F$ exists, then it is unique up to (unique) isomorphism. If a colimit $\underset{\longrightarrow}{\lim } F$ exists, then it is unique up to (unique) isomorphism.

Therefore it makes sense to speak about the limit or colimit.
Proof. Let $\left(L, \varphi_{x}\right)$ and $\left(L^{\prime}, \varphi_{x}^{\prime}\right)$ be two limits. Then, by the universal property for L, there is a morphism $\Psi: L^{\prime} \longrightarrow L$ such that $\varphi_{x}^{\prime}=\varphi_{x} \circ \Psi$. By the universal property for L^{\prime} there is a morphism $\Psi^{\prime}: L \longrightarrow L^{\prime}$ such that $\varphi_{x}=\varphi_{x}^{\prime} \circ \Psi^{\prime}$.

Now, again by the universal property of L, there exists a unique morphism $\Phi: L \longrightarrow L$ such that $\varphi_{x}=\varphi_{x} \circ \Phi$. But we know two candidates for $\Phi: \operatorname{id}_{L}$ and $\Psi \circ \Psi^{\prime}$. It follows that $\Psi \circ \Psi^{\prime}=\mathrm{id}_{L}$. Similarly one sees that $\Psi^{\prime} \circ \Psi=\mathrm{id}_{L^{\prime}}$. It follows that Ψ and Ψ^{\prime} are mutually inverse isomorphisms.

Observation 7.4. If any $F \in \mathcal{O}$ bresh $\mathscr{C}_{\mathscr{C}} \mathscr{X}$ has a limit, then \varliminf_{\leftarrow} defines a functor presh $_{\mathscr{C}} \mathscr{X} \longrightarrow \mathscr{C}$, and this functor is right adjoint to Δ.
 and this functor is left adjoint to Δ.

Example 7.5. Let (X, \leqslant) be a poset with a smallest element 0 . Then we have seen in Example 6.2 that

$$
\xrightarrow{\lim }=\pi_{0}: \operatorname{presh}_{\mathscr{C}} X \longrightarrow \mathscr{C}: F \longmapsto F_{0} .
$$

Similarly, if X has a largest element ω, then $\underset{\leftrightarrows}{\lim }=\pi_{\omega}$.
Definition 7.6 (Product and coproduct). Let X be a set. We may regard X as a poset with trivial poset structure. Let \mathscr{C} be a category, and $F \in \operatorname{presh}_{\mathscr{C}} X$. (That is F is a collection of objects F_{x}, one for each $x \in X$.)

- If the limit $\lim F$ exists, then it is called product of the objects F_{x}, and denoted by $\prod_{x \in X} F_{x}$.
- If the colimit $\underset{\sim}{\lim F} F$ exists, then it is called coproduct of the objects F_{x}, and denoted by $\coprod_{x \in X} F_{x}$.

Example 7.7. In the category Set, products are cartesian products, and coproducts are disjoint unions.

Example 7.8. In $\operatorname{Mod} R$, both finite products and finite coproducts are given by direct sums.
Definition 7.9 (Pullback and pushout). Let X be the poset given by the Hasse diagram

Let $F \in \operatorname{presh}_{\mathscr{C}} X$. If the limit $\lim F$ exists, then it is called the pullback (or fibre product) of F, and denoted by $F_{a} \prod_{F_{0}} F_{b}$.

By abuse of notation we also call the commutative square

a pullback, provided F_{ω} is the pullback of the rest of the diagram.
More explicitly, a pullback is a commutative square as above, such that for any other X with morphisms $X \longrightarrow F_{a}$ and $X \longrightarrow F_{b}$ making a similar square commutative, there is a unique morphism $X \longrightarrow F_{\omega}$ making the two triangles in the following diagram commutative.

Let Y be the poset given by the Hasse diagram

Let $F \in \operatorname{presh}_{\mathscr{C}} X$. If the colimit $\underset{\longrightarrow}{\lim } F$ exists, then we call it the pushout of F, and denote it by $F_{a} \coprod_{F_{\omega}} F_{b}$.

Example 7.10. In the category Set, the pullback of

is given by

$$
F_{a} \prod_{F_{0}} F_{b}=\left\{(a, b) \in F_{a} \times F_{b} \mid \operatorname{res}_{0}^{a}(a)=\operatorname{res}_{0}^{b}(b)\right\} .
$$

The pushout of

is given by

$$
F_{a} \coprod_{F_{\omega}} F_{b}=F_{a} \coprod F_{b} /\left(\operatorname{res}_{a}^{\omega}(x) \sim \operatorname{res}_{b}^{\omega}(x) \mid x \in F_{\omega}\right) .
$$

8 Limits and adjoint functors

Construction 8.1. Let $\mathrm{F}: \mathscr{C} \longrightarrow \mathscr{D}$ be a functor, and \mathscr{X} be a small category.
Then F induces a functor $\mathrm{F}^{\mathrm{presh}}: \operatorname{presh}_{\mathscr{C}} \mathscr{X} \longrightarrow \operatorname{presh}_{\mathscr{D}} \mathscr{X}$.
Lemma 8.2. Let (F, G) be an adjoint pair of functors between categories \mathscr{C} and \mathscr{D}. Let \mathscr{X} be a small category.

Then the corresponding functors between presheaf categories
$\mathrm{F}^{\text {presh }}: \operatorname{presh}_{\mathscr{C}} \mathscr{X} \longrightarrow \operatorname{presh}_{\mathscr{D}} \mathscr{X}$ and $\mathrm{G}^{\text {presh }}: \operatorname{presh}_{\mathscr{D}} \mathscr{X} \longrightarrow \operatorname{presh}_{\mathscr{C}} \mathscr{X}$
also form an adjoint pair.
Proof. We have a natural isomorphism $\eta: \operatorname{Hom}_{\mathscr{D}}(\mathrm{F}-,-) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(-, \mathrm{G}-)$, i.e. a collection of bijections $\eta_{X, Y}: \operatorname{Hom}_{\mathscr{D}}(\mathrm{F} X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X, \mathrm{G} Y)$ such that

- for any $f: X \longrightarrow X^{\prime} \in \mathscr{C}$ we have a commutative square

that is for any $\varphi: \mathrm{F} X^{\prime} \longrightarrow Y \in \mathscr{D}$ we have

$$
\eta_{X, Y}(\varphi \circ \mathrm{~F} f)=\eta_{X^{\prime}, Y}(\varphi) \circ f
$$

- similarly, for any $g: Y \longrightarrow Y^{\prime} \in \mathscr{D}$ and any $\varphi \in \operatorname{Hom}_{\mathscr{D}}(X, Y)$ we have

$$
\mathrm{G} g \circ \eta_{X, Y}(\varphi)=\eta_{X, Y^{\prime}}(g \circ \varphi) .
$$

Now we observe that

$$
\begin{aligned}
& \operatorname{Hom}_{\mathrm{presh}_{\mathscr{D}} \mathscr{X}}\left(\mathrm{F}^{\mathrm{presh}} S, T\right) \\
= & \left\{\left(f_{x}\right)_{x \in \mathcal{O} \mathscr{X}} \underset{x \in \mathcal{O} \mathscr{O}}{X} \operatorname{Hom}_{\mathscr{D}}\left(\mathrm{F} S_{x}, T_{x}\right) \mid \forall \alpha \in \operatorname{Hom}_{\mathscr{X}}(x, y): f_{x} \circ \mathrm{~F} S_{\alpha}=T_{\alpha} \circ f_{y}\right\}
\end{aligned}
$$

Now $f_{x} \circ S_{\alpha}$ and $T_{\alpha} \circ f_{y}$ are morphisms from $\mathrm{F} S_{y}$ to T_{x}. Since $\eta_{S_{y}, T_{X}}$ is a bijection we may replace the conditions above by $\eta_{S_{y}, T_{X}}\left(f_{x} \circ \mathrm{~F} S_{\alpha}\right)=\eta_{S_{y}, T_{x}}\left(T_{\alpha} \circ f_{y}\right)$. Now note that by the two bullet points above the left hand side is equal to $\eta_{S_{x}, T_{x}}\left(f_{x}\right) \circ S_{\alpha}$, while the right hand side is equal to $\mathrm{G} T_{\alpha} \eta_{S_{y}, T_{y}}\left(f_{y}\right)$. Thus, writing g_{i} for $\eta_{S_{x}, T_{x}}\left(f_{x}\right)$, the above set is in bijection to

$$
\begin{aligned}
& \left\{\left(g_{x}\right)_{x \in \mathcal{O} \mathscr{X}} \mathscr{X} \in \underset{x \in \mathcal{O} \mathscr{X}}{X} \operatorname{Hom}_{\mathscr{C}}\left(S_{x}, \mathrm{G} T_{x}\right) \mid \forall \alpha \in \operatorname{Hom}_{\mathscr{X}}(x, y): g_{x} \circ S_{\alpha}=\mathrm{G} T_{\alpha} \circ g_{y}\right\} \\
= & \operatorname{Hom}_{\mathrm{presh}_{\mathscr{C}}} \mathscr{X}\left(S, \mathrm{G}^{\text {presh }} T\right)
\end{aligned}
$$

Theorem 8.3. Let (F, G) be an adjoint pair of functors between categories \mathscr{C} and \mathscr{D}. Let \mathscr{X} be a small category.

- Let $X \in \operatorname{presh}_{\mathscr{D}} \mathscr{X}$ such that $\varliminf_{\longleftarrow} X$ exists. Then

$$
\lim _{\leftrightarrows} \mathrm{G}^{\text {presh }} X=\mathrm{G} \lim _{\leftrightarrows} X .
$$

(In particular this limit also exists.)

- Let $X \in \operatorname{presh}_{\mathscr{C}} \mathscr{X}$ such that $\xrightarrow[\longrightarrow]{\lim } X$ exists. Then

$$
\xrightarrow{\lim } F^{\text {presh }} X=F \underset{\longrightarrow}{\lim } X .
$$

Motto: Right adjoints commute with limits, left adjoints commute with colimits.

Proof. We only prove the first claim, the second one is dual.
We have

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{C}}\left(-, \mathrm{G} \lim _{\rightleftarrows} X\right) & \cong \operatorname{Hom}_{\mathscr{D}}\left(\mathrm{F}-, \lim _{\leftrightarrows} X\right) \\
& \cong \operatorname{Hom}_{\mathrm{presh}_{\mathscr{D}} \mathscr{X}}(\Delta \mathrm{F}-, X) \\
& =\operatorname{Hom}_{\text {presh }_{\mathscr{D}}} \mathscr{X}\left(\mathrm{F}^{\text {presh }} \Delta-, X\right) \\
& =\operatorname{Hom}_{\text {presh }_{\mathscr{C}}} \mathscr{X}\left(\Delta-, \mathrm{G}^{\text {presh }} X\right) .
\end{aligned}
$$

Example 8.4. Consider the adjoint pair $\left(R^{(-)}, \mathrm{f}\right)$ between $\operatorname{Mod} R$ and Set from Example 6.3. We note that

$$
R^{\left(X \amalg^{Y}\right)}=R^{(X)} \oplus R^{(Y)} \text { and } \mathrm{f}(M \oplus N)=\mathrm{f} M \times \mathrm{f} N
$$

by Theorem 8.3 above. (Of course in this example we could also have checked that directly.)

However in general neither

$$
R^{(X \times Y)}=R^{(X)} \times R^{(Y)} \text { nor } \mathrm{f}(M \oplus N)=\mathrm{f} M \coprod \mathrm{f} N .
$$

9 Exercises

Exercise I.1. - Describe which morphisms in Set are monomorphisms, epimorphisms, split monomorphisms, and split epimorphisms.

- Describe which morphisms in Top are monomorphisms and which morphism are epimorphisms. Find an example of a morphism that is both a monomorphism and an epimorphism, but not an isomorphism.
- Show that in the category Ring, the inclusion $\mathbb{Z} \longrightarrow \mathbb{Q}$ is both a monomorphism and an epimorphism.

Exercise I.2. Let \mathscr{C} be a category, f and g two composable morphisms.

- Show that if f and g are monomorphisms, then so is $f \circ g$.
- Show that if $f \circ g$ is a monomorphism, then so is g.
- Find an example of morphisms such that $f \circ g$ is a monomorphism, but f is not a monomorphism.

Exercise I.3. Show that

- Any split monomorphism is a monomorphism.
- Any split epimorphism is an epimorphism.
- The following are equivalent, for a morphism f :
- f is an isomorphism;
- f is a split monomorphism and an epimorphism;
- f is a monomorphism ans a split epimorphism.
- If f is an isomorphism, the the g in the definition is uniquely determined. (And hence we denote it by f^{-1}.)

Exercise I.4. Which of the following functors are full? faithful? dense?

- the natural inclusion $\mathbf{A b} \longrightarrow \mathbf{G p}$;
- forgetting the topology Top \longrightarrow Set;
- the Hom-functor $\operatorname{Hom}_{\mathbf{A b}}(\mathbb{Z} /(2),-): \mathbf{A b} \longrightarrow$ Set.

Exercise I.5. Let X be the poset given by the Hasse diagram ${ }^{a} \vee_{0}{ }^{b}$ that is $a \geqslant 0$ and $b \geqslant 0$ with a and b incomparable.

- Determine all objects $F \in \operatorname{presh}_{\text {Set }} X$ such that $F(i) \in\{\emptyset,\{\star\}\} \forall i \in X$.
- Which of the presheaves determined above are isomorphic to a presheaf of the form $\operatorname{Hom}_{\mathscr{C}_{X}}(-, i)$ for some $i \in X$?
- Determine all objects $F \in \operatorname{presh}_{\bmod \mathbb{F}} X$ (where \mathbb{F} is a field), such that $F(i)=\mathbb{F}$ for all $i \in X$.
- Which of the presheaves determined in the third part are isomorphic?

Exercise I.6. Recall that for a group G, we denote by $G^{\text {op }}$ the opposite group, that is the group with the same elements as G, but multiplication given by $g \cdot{ }_{\text {op }} h=h \cdot g$.

- Show that this construction defines a (covariant!) functor $\mathbf{G p} \longrightarrow \mathbf{G p}$.
- Any group G is isomorphic to its opposite group: An isomorphism is given by $g \longmapsto g^{-1}$. Investigate if this collection of isomorphisms defines a natural isomorphism id $\mathbf{G p} \longrightarrow-{ }^{\text {op }}$.

Exercise I.7. Let G be a non-trivial group. We can consider the category \mathscr{C}_{G} having only one object \star, with $\operatorname{Hom}_{\mathscr{C}_{G}}(\star, \star)=G$, and composition of morphisms given by group multiplication. (Convince yourself that this is a category.)

Consider the following two functors $\mathrm{F}=\operatorname{Hom}_{\mathscr{C}_{G}}(\star,-)$ and $\mathrm{H}: \mathscr{C}_{G} \longrightarrow$ Set given by $\mathrm{H}(\star)=G$ and $\mathrm{H}(g)=1_{G}$.

Show that the functors F and H agree on all (i.e. the one) objects, but are not naturally isomorphic.

Exercise I.8. Let $X=\{a, b, c\}$ with the preorder given $a \leqslant a, a \leqslant b, a \leqslant c$, $b \leqslant a, b \leqslant b, b \leqslant c, c \leqslant c$. (So a and b violate anti-symmetry). Let $Y=\{1,2\}$ with the natural poset structure (i.e. $1 \leqslant 2$). Show that the poset categories $\mathscr{C}_{(X, \leqslant)}$ and $\mathscr{C}_{(Y, \leqslant)}$ are equivalent.

More generally, given an arbitrary preordered set X, find a poset Y such that the cateories $\mathscr{C}_{(X, \leqslant)}$ and $\mathscr{C}_{(Y, \leqslant)}$ are equivalent.

Exercise I.9. Let $X=\{1 \leqslant 2\}$ and $Y=\{1\}$. Let \mathscr{C} be any category.

- Convince yourself that inclusion of Y into X induces a functor

$$
\operatorname{presh}_{\mathscr{C}} X \longrightarrow \operatorname{presh}_{\mathscr{C}} Y: F \longmapsto F \circ \text { incl } .
$$

- Find a right adjoint to the functor above.
- For $\mathscr{C}=\mathbf{S e t}$ or $\mathscr{C}=\mathbf{A b}$, find a left adjoint to the functor above.

Exercise I.10. Find left adjoints to the functors

- forget: Ring $\longrightarrow \mathbf{R n g}$, the forgetful functor from rings with multiplicative unit to rings without multiplicative unit.
- forget: $\mathbf{R i n g}_{*} \rightarrow \mathbf{R i n g}$, where $\mathbf{R i n g}_{*}$ is the category of "pointed rings", that is pairs (R, r) of a Ring R and an element r, and morphisms being ring homomorphisms which send the distinguished element of the first ring to the distinguished element of the second ring.

Find the unit and counit maps for both the above adjunctions.
Exercise I.11. Let A be an abelian group, S and T two subgroups.

- Show that the pullback of

is given by $S \cap T$.
- Show that the pushout of

is given by $A /(S+T)$.
Exercise I.12. In the category Ab
- Show that the pullback of

is given by

$$
L \prod_{N} M=\{(l, m) \in L \oplus M \mid \alpha(l)=\beta(m)\}
$$

(with the obvious maps to L and M).

- Show that the pushout of

is given by

$$
M \coprod_{L} N=M \oplus N /\{(\beta(\ell),-\alpha(\ell)) \mid \ell \in L\} .
$$

Exercise I.13. Let X be any poset, and F a Set-valued presheaf on X. Show

- that the limit $\underset{\rightleftarrows}{\lim } F$ exists;
- that the colimit $\underset{\longrightarrow}{\lim } F$ exists.

Hint: Construct them explicitly, starting with product and coproduct, respectively.

Exercise I.14. In any category, consider the following diagram

Show that the "iterated pushout" $\left(W \coprod_{X} Y\right) \coprod_{Y} Z$ is isomorphic to the pushout along the composition of the horizontal arrows $W \coprod_{X} Z$, provided all the pushouts exist.

Chapter II

Additive and abelian categories

10 Additive categories

Definition 10.1. A pre-additive category is a category \mathscr{A} such that all Homsets are abelian groups, and composition of morphisms is bilinear.

An additive category is a pre-additive category \mathscr{A} such that

- there is a zero-object, i.e. an object 0 such that for any $X \in \mathcal{O b} \mathscr{A}$ both $\operatorname{Hom}_{\mathscr{A}}(X, 0)$ and $\operatorname{Hom}_{\mathscr{A}}(0, X)$ contain precisely one morphism.
- for any $X, Y \in \mathcal{O b} \mathscr{A}$ there is a biproduct, i.e. an object $X \oplus Y$ with morphisms

such that

$$
\operatorname{id}_{X}=\pi_{X} \circ \iota_{X}, \quad \operatorname{id}_{Y}=\pi_{Y} \circ \iota_{Y}, \quad \text { and } \quad \operatorname{id}_{X \oplus Y}=\iota_{X} \circ \pi_{X}+\iota_{Y} \circ \pi_{Y} .
$$

Example 10.2. - Ab is an additive category.

- For a ring R, the category $\operatorname{Mod} R$ is additive.
- Set and Top are not additive categories.
- For any small category \mathscr{X}, and any additive category \mathscr{A}, the category $\operatorname{presh}_{\mathscr{A}} \mathscr{X}$ is additive.

Observation 10.3. In the situation of the biproduct diagram, we have

$$
\pi_{Y} \circ \iota_{X}=\pi_{Y} \circ \underbrace{\iota_{X} \circ \pi_{X}}_{=\operatorname{id}_{X \oplus Y}-\iota_{Y} \circ \pi_{Y}} \circ \iota_{X}=\pi_{y} \circ \iota_{X}-\underbrace{\pi_{Y} \circ \iota_{Y}}_{=\operatorname{id}_{Y}} \circ \pi_{Y} \circ \iota_{X}=0,
$$

and similarly

$$
\pi_{X} \circ \iota_{Y}=0
$$

Lemma 10.4. Let \mathscr{A} be an additive category. Then, for any two objects X and Y, the biproduct $X \oplus Y$ is a product and a coproduct of X and Y.

Proof. We show that $X \oplus Y$ is a product, the proof that it is a coproduct is dual.

We have to show that for any maps $f_{X}: H \rightarrow X$ and $f_{Y}: H \rightarrow Y$ there is precisely one map $f: H \longrightarrow X \oplus Y$ such that $\pi_{X} \circ f=f_{X}$ and $\pi_{Y} \circ f=f_{Y}$.

We see that

$$
f=\operatorname{id}_{X \oplus Y} \circ f=\iota_{X} \circ \pi_{X} \circ f+\iota_{Y} \circ \pi_{Y} \circ f=\iota_{X} \circ f_{X}+\iota_{Y} \circ f_{Y}
$$

Thus f is unique. On the other hand we can see that $\iota_{X} \circ f_{X}+\iota_{Y} \circ f_{Y}$ fullfils the requirements:

$$
\pi_{X} \circ\left(\iota_{X} \circ f_{X}+\iota_{Y} \circ f_{Y}\right)=\underbrace{\pi_{X} \circ \iota_{X}}_{=\operatorname{id} X} \circ f_{X}+\underbrace{\pi_{X} \circ \iota_{Y}}_{=0} \circ f_{Y}=f_{X} .
$$

and similarly

$$
\pi_{Y} \circ\left(\iota_{X} \circ f_{X}+\iota_{Y} \circ f_{Y}\right)=f_{Y}
$$

Remark 10.5. - In particular in an additive category any two objects have isomorphic product and coproduct. This shows that neither Set nor Top can be additive categories.

- It is possible to show that the addition of morphism is completely determined by the biproducts, and not an additional part of the structure.
That is, an additive category is a category with a zero-object, such that any two objects have a product and a coproduct which are isomorphic, satisfying certain properties.

Remark 10.6. For $n \geqslant 1$, and objects X_{1}, \ldots, X_{n}, we can iteratedly construct

$$
\left.X=\left(\cdots\left(X_{1} \oplus X_{2}\right) \oplus X_{3}\right) \cdots\right) \oplus X_{n}
$$

We note that for this object we have, similarly to the biproduct diagram and with maps given by compositions of the maps there

$$
\pi_{i}: X \longrightarrow X_{i}, \text { and } \iota_{i}: X_{i} \longrightarrow X
$$

such that

$$
\pi_{i} \circ \iota_{i}=\operatorname{id}_{X_{i}} \forall i, \text { and } \sum_{i=1}^{n} \iota_{i} \circ \pi_{i}=\operatorname{id}_{X}
$$

Remark 10.7 (Matrix notation). We often use the following intuitive matrix notation for morphisms from $X=X_{1} \oplus \cdots \oplus X_{n}$ to $Y=Y_{1} \oplus \cdots \oplus Y_{m}$:

A morphism $f: X \longrightarrow Y$ is represented by the matrix

$$
\left(\pi_{Y_{i}} \circ f \circ \iota_{X_{j}}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}
$$

Conversely, given a matrix

$$
\left(f_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}} \text { with } f_{i j}: X_{j} \longrightarrow Y_{i}
$$

we can interpret it as the map

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} \iota_{Y_{i}} \circ f_{i j} \circ \pi_{X_{j}}: X \longrightarrow Y
$$

One easily sees that these constructions are mutually inverse to each other, and thus we may identify matrices and maps between biproducts.

The main advantage of this notation is, that composition of maps is just given by matrix multiplication:

Given

$$
\bigoplus_{k=1}^{o} X_{k} \xrightarrow{\left(f_{j k}\right)} \bigoplus_{j=1}^{n} Y_{j} \xrightarrow{\left(g_{i j}\right)} \bigoplus_{i=1}^{m} Z_{i}
$$

we have

$$
\begin{aligned}
\left(g_{i j}\right)_{i, j} \circ\left(f_{j k}\right)_{j, k} & =\left(\sum_{i=1}^{m} \sum_{j=1}^{n} \iota_{Z_{i}} \circ g_{i j} \circ \pi_{Y_{j}}\right) \circ\left(\sum_{j=1}^{n} \sum_{k=1}^{o} \iota_{Y_{j}} \circ f_{j k} \circ \pi_{X_{k}}\right) \\
& =\left(\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{o} \iota_{Z_{i}} \circ g_{i j} \circ f_{j k} \circ \pi_{X_{k}}\right) \\
& =\left(\sum_{j=1}^{n} g_{i j} \circ f_{j k}\right)_{i, k} .
\end{aligned}
$$

11 Kernels and cokernels

Definition 11.1. Let $f: X \longrightarrow Y$ be a morphism in an additive category. The kernel of f is (if it exists) the pullback of

$$
X \xrightarrow{f} \stackrel{0}{\downarrow} \stackrel{\downarrow}{Y}
$$

In other words, the kernel is given by an object $\operatorname{Ker} f$, together with a morphism $\kappa: \operatorname{Ker} f \longrightarrow X$ (the other morphism $\operatorname{Ker} f \longrightarrow 0$ necessarily being 0), such that $f \circ \kappa=0$, and that for any object H and morphism $h: H \longrightarrow X$ such that $f \circ h=0$ there is a unique morphism $\widehat{h}: H \rightarrow \operatorname{Ker} f$ such that $h=\kappa \circ \widehat{h}$.

Dually, the cokernel of f is, if it exists, the pushout of

and consists of an object $\operatorname{Cok} f$ and a map $\pi: Y \longrightarrow \operatorname{Cok} f$.

Observation 11.2. In the definition of kernel above the map κ is a monomorphism: Let $h, g: H \longrightarrow \operatorname{Ker} f$ such that $\kappa \circ h=\kappa \circ g$. Then clearly $f \circ \kappa \circ h=0$, and therefore $\kappa \circ h$ factors uniquely through κ, i.e. $h=g$.

Dually the map π in the definition of cokernel is an epimorphism.
Lemma 11.3. Let $f: X \longrightarrow Y$ be a morphism in an additive category. Then f is a monomorphism if and only if $0 \longrightarrow X$ is a kernel of f. Dually f is an epimorphism if and only if $Y \longrightarrow 0$ is a cokernel of f.

Proof. Assume first that f is a monomorphism. Then any morphism $h: H \longrightarrow X$ such that $f \circ h=0$ is necessarily 0 , and therefore factors (uniquely) through $0 \longrightarrow X$.

Conversely, assume $0 \rightarrow X$ is a kernel of f. Then any map h such that $f \circ h=0$ factors through 0 , that is is zero.

12 Abelian categories

Definition 12.1. A pre-abelian category is an additive category \mathscr{A}, in which every morphism has a kernel and a cokernel.

Definition 12.2. Let \mathscr{A} be pre-abelian, and $f: X \longrightarrow Y$ a morphism. Let Ker $f \xrightarrow{\iota} X$ and $Y \xrightarrow{\pi}$ Cok f be kernel and cokernel of f. Then

- the image of f, denoted by $\operatorname{Im} f$, is the kernel of π;
- the coimage of f, denoted by $\operatorname{Coim} f$, is the cokernel of ι.

Proposition 12.3. In the setup of Definition 12.2. there is a unique map \bar{f} making the diagram

commutative.

Proof. Uniqueness of \bar{f} follows immediately, since morphisms ρ and κ are epi and mono, respectively.

Since $f \circ \iota=0$ there is a morphism $f^{\prime}: \operatorname{Coim} f \longrightarrow Y$ such that $f^{\prime} \circ \rho=f$. Moreover, since ρ is epi, $0=\pi \circ f=\pi \circ f^{\prime} \circ \rho$ implies $\pi \circ f^{\prime}=0$, hence f^{\prime} factors through κ. This proves the existence of \bar{f}.

Definition 12.4. An abelian category is a pre-abelian category, in which, for any morphism $f: X \rightarrow Y$ the induced morphism $\bar{f}: \operatorname{Coim} f \rightarrow \operatorname{Im} f$ is an isomorphism.

Remark 12.5. In other words, an abelian category is an additive category with kernels and cokernels, in which the first isomorphism theorem holds. (Recall that the first isomorphism theorem is precisely that X modulo kernel is isomorphic with the image.)

Observation 12.6. In an abelian category

- every monomorphism is a kernel of its cokernel;
- every epimorphism is a cokernel of its kernel;
- every morphism that is both a monomorphism and an epimorphism is an isomorphism.

Remark 12.7. One can show that the first two points above give an equivalent definition of abelian category.

13 Exact sequences, pullbacks and pushouts

Observation 13.1. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be morphisms in an abelian category, such that $g \circ f=0$. Then we have the following commutative diagram

where the right part consists of the cokernels of the left horizontal maps, and the left part consists of the kernels of the right horizontal maps.

It follows that the morphism $\operatorname{Im} f \longrightarrow \operatorname{Ker} g$ is an isomorphism if and only if the morphism $\operatorname{Cok} f \longrightarrow \operatorname{Im} g$ is. (We may note that the former always is a monomorphism, and the latter always is an epimorphism.)

Definition 13.2. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be morphisms in an abelian category, such that $g \circ f=0$. We say that this sequence of morphisms is exact if the natural morphism $\operatorname{Im} f \rightarrow \operatorname{Ker} g$ is an isomorphism.

We say that a longer sequence of morphisms is exact if it is exact in every (inner) position.

Example 13.3. - The sequence $0 \longrightarrow A \xrightarrow{f} B$ is exact if and only if $\operatorname{Ker} f=$ 0 , that is if and only if f is a monomorphism.

- Dually the sequence $A \xrightarrow{g} B \longrightarrow 0$ is exact if and only if $\operatorname{Cok} g=0$.
- The sequence $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C$ is exact if and only if
- f is a monomorphism (as before), and
- Ker $g=\operatorname{Im} f=A$, that is $A \xrightarrow{f} B$ is a kernel of g.
- Dually the sequence $A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact if and only if $B \xrightarrow{g} C$ is a cokernel of f.
- The sequence $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact if both f is a kernel of g and g is a cokernel of f. Such an exact sequence is called short exact sequence.

Proposition 13.4. Let \mathscr{A} be an abelian category. Consider the morphisms in the following commutative square.

- The square is a pullback if and only if the sequence

$$
0 \longrightarrow \longrightarrow \xrightarrow{\binom{-f}{g}} B \oplus C \xrightarrow{\left(\begin{array}{ll}
h \quad i
\end{array}\right)} D
$$

is exact.

- The square is a pushout if and only if the sequence

$$
A \xrightarrow{\binom{-f}{g}} B \oplus C \xrightarrow{\left(\begin{array}{ll}
h \quad i
\end{array}\right)} D \longrightarrow
$$

is exact.
Proof. We first observe that the commutativity of the square means that ($h i$) $\binom{-f}{g}=-h \circ f+i \circ g=0$.

Now observe that the square is a pullback if and only if

$$
\begin{aligned}
& \forall \widetilde{A} \in \mathcal{O b} \mathscr{A} \forall \widetilde{f}: \widetilde{A} \longrightarrow B \forall \widetilde{g}: \widetilde{A} \longrightarrow C: \\
& \quad \text { if } h \circ \widetilde{f}=i \circ \widetilde{g} \text { then } \exists!\varphi: \widetilde{A} \longrightarrow A: \widetilde{f}=f \circ \varphi \text { and } \widetilde{g}=g \circ \varphi
\end{aligned}
$$

assembling maps in matrices we obtain that this is equivalent to

$$
\begin{aligned}
& \forall \widetilde{A} \in \mathcal{O} \mathfrak{A} \forall\binom{-\widetilde{f}}{\widetilde{g}}: \widetilde{A} \longrightarrow B \oplus C: \\
& \quad \text { if }\left(\begin{array}{ll}
h & i
\end{array}\right) \circ\binom{-\widetilde{f}}{\widetilde{g}}=0 \text { then } \exists!\varphi: \widetilde{A} \longrightarrow A:\binom{-\widetilde{f}}{\widetilde{g}}=\binom{-f}{g} \circ \varphi
\end{aligned}
$$

Now note that this last statement is precisely the definition of a kernel.
The proof of the second point is dual.
Remark 13.5. Proposition 13.4 shows, in particular, that in abelian categories pullbacks and pushouts always exist.

Corollary 13.6. Let \mathscr{A} be an abelian category. If the square

- is a pullback, and i is an epi, then it is also a pushout;
- is a pushout, and f is a mono, then it is also a pullback.

Proposition 13.7. Let \mathscr{A} be an abelian category.

- If the square

is a pullback, then the kernel morphism $\operatorname{Ker} f \longrightarrow \operatorname{Ker} i$ is an isomorphism.
- If the square is a pushout then the cokernel morphism $\operatorname{Cok} f \rightarrow \operatorname{Cok} i$ is an isomorphism.

Proof. We only prove the first part, the second one is dual.
Denote the inclusions of the kernels by $\iota: \operatorname{Ker} f \longrightarrow A$ and $\kappa: \operatorname{Ker} i \longrightarrow C$, respectively, and the kernel morphism by $\varphi: \operatorname{Ker} f \longrightarrow \operatorname{Ker} i$. Consider the morphism 0: Ker $i \longrightarrow B$, as indicated in the following diagram.

Clearly $i \circ \kappa=0=h \circ 0$, so by the pullback property there is a morphism $\widehat{\kappa}: \operatorname{Ker} i \longrightarrow A$ such that $\kappa=g \circ \widehat{\kappa}$ and $0=f \circ \widehat{\kappa}$. By the second equality $\widehat{\kappa}$ factors through the kernel of f, that is there is a morphism $\widehat{\widehat{\kappa}}: \operatorname{Ker} i \rightarrow \operatorname{Ker} f$ such that $\widehat{\kappa}=\iota \circ \widehat{\widehat{\kappa}}$.

Now it only remains to verify that $\widehat{\widehat{\kappa}}$ is an inverse of φ. Firstly we have

$$
\kappa \circ \varphi \circ \widehat{\widehat{\kappa}}=g \circ \iota \circ \widehat{\kappa}=g \circ \widehat{\kappa}=\kappa,
$$

and hence, since κ is a monomorphism,

$$
\varphi \circ \widehat{\widehat{\kappa}}=\operatorname{id}_{\operatorname{Ker} i} .
$$

Secondly we have

$$
\binom{-f}{g} \circ \iota \circ \widehat{\widehat{\kappa}} \circ \varphi=\binom{-f}{g} \circ \widehat{\kappa} \circ \varphi=\binom{0}{\kappa} \circ \varphi=\binom{0}{\kappa \circ \varphi}=\binom{-f \circ \iota}{g \circ \iota}=\binom{-f}{g} \circ \iota,
$$

and hence, since both ι and $\binom{-f}{g}$ are monomorphisms,

$$
\widehat{\widehat{\kappa}} \circ \varphi=\operatorname{id}_{\operatorname{Ker} f}
$$

Corollary 13.8. In an abelian category

- the pullback of a mono is a mono;
- the pullback of an epi is an epi;
- the pushout of a mono is a mono;
- the pushout of an epi is an epi.

Moreover, in the case of the second and third point, the square in question is actually both a pullback and a pushout.
Proof. The first point follows immediately from Proposition 13.7 above.
For the second point, note first that the pullback now also is a pushout, by Corollary 13.6. Now apply (the dual-part of) Proposition 13.7 .

The third and fourth points are dual to the second and first, respectively.
Proposition 13.9. In an abelian category, let $A \xrightarrow{f} B \xrightarrow{g} C$ be morphisms such that $g \circ f=0$. Then the following are equivalent.

- The sequence $A \xrightarrow{f} B \xrightarrow{g} C$ is exact.
- For any morphism $x: X \longrightarrow B$, such that $g \circ x=0$, there is an object \widehat{X}, and morphisms \widehat{x} and \widehat{f} as in the following diagram

such that the square commutes, and \widehat{f} is an epimorphism.
- For any morphism $y: B \longrightarrow Y$, such that $y \circ f=0$, there are an object \check{Y}, and morphisms \check{y} and \check{f} as in the following diagram

such that the square commutes, and \check{g} is a monomorphism.
Proof. We only prove the equivalence of the first two points. The equivalence of the first and last point is dual to this.

Assume first that $A \xrightarrow{f} B \xrightarrow{g} C$ is exact, that is $\operatorname{Im} f \leadsto B$ is a kernel of g. Thus any morphism x such that $g \circ x=0$ factors through $\operatorname{Im} f \leadsto B$, as indicated in the following diagram.

We form the pullback as indicated above. By Corollary 13.8 the morphism $\widehat{f^{\prime}}$ is epi.

Now assume conversely that the second point holds. In particular we can find a commutative diagram

where $\iota: \operatorname{Ker} g \longrightarrow B$ is a kernel of g, and \widehat{f} is an epimorphism.
Then $\operatorname{Ker} g$ is the image of $\iota \circ \widehat{f}=f \circ \widehat{\iota}$, and the inclusion of Ker g into B factors through the inclusion of $\operatorname{Im} f$. It follows that the inclusion of $\operatorname{Im} f$ into $\operatorname{Ker} g$, which exists since $g \circ f=0$, is an isomorphism, i.e. that the sequence is exact.

Remark 13.10. In the category $\operatorname{Mod} R$ of modules over a ring we can determine exactness using elements: A sequence of morphisms

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

with $g \circ f=0$ is exact if for every element $x \in B$ such that $g(x)=0$ there is a preimage, that is $\widehat{x} \in A$ such that $f(\widehat{x})=x$.

Proposition 13.9 now tells us that the same holds for arbitrary abelian categories, if we replace "element" by "morphism $X \xrightarrow{x}$ ", and "preimage" by "commutative square with epimorphism".

We will see this kind of substitution in practice in the next section.

14 Some diagram lemmas

Theorem 14.1 (Five lemma). Let \mathscr{A} be an abelian category. Consider the following commutative diagram with exact rows.

- Assume f_{2} and f_{4} are monomorphisms, and f_{1} is an epimorphism. Then f_{3} is a monomorphism.
- Assume f_{2} and f_{4} are epimorphisms, and f_{5} is a monomorphism. Then f_{3} is an epimorphism.

In particular, if all of f_{1}, f_{2}, f_{4}, and f_{5} are isomorphisms, then so is f_{3}.

Proof for the case $\operatorname{Mod} R$.
First point: Let $x \in A_{3}$, such that $f_{3}(x)=0$. Then $f_{4}\left(a_{3}(x)\right)=b_{3}\left(f_{3}(x)\right)=0$, and, since f_{4} is a monomorphism, $a_{3}(x)=0$.

Thus there is a preimage \widehat{x} of x in A_{2}. We see that $b_{2}\left(f_{2}(\widehat{x})\right)=f_{3}\left(a_{2}(\widehat{x})\right)=$ $f_{3}(x)=0$, and thus there is a preimage $\widehat{f_{2}(\widehat{x})}$ of $f_{2}(\widehat{x})$ in B_{1}.

Since f_{1} is assumed to be an epimorphism we can find a preimage $\widetilde{f_{2}(\widehat{x})}$ of $\widehat{f_{2}(\widehat{x})}$ in A_{1}.

Now note that

$$
f_{2}\left(a_{1}\left(\widetilde{f_{2}(\widehat{x})}\right)\right)=b_{1}\left(f_{1}\left(\widetilde{f_{2}(\widehat{x})}\right)\right)=f_{2}(\widehat{x})
$$

and, since f_{2} is a monomorphism this implies $a_{1}\left(\widetilde{f_{2}(\widehat{x})}\right)=\widehat{x}$.
Thus $x=a_{2}(\widehat{x})=a_{2}\left(a_{1}\left(\widetilde{f_{2}(\widehat{x})}\right)\right)=0$.
SECond point: Let $x \in B_{3}$. Since f_{4} is epi there is $x^{\prime} \in A_{4}$ such that $f_{4}\left(x^{\prime}\right)=$ $b_{3}(x)$.

We note that $f_{5}\left(a_{4}\left(x^{\prime}\right)\right)=b_{4}\left(f_{4}\left(x^{\prime}\right)\right)=b_{4}\left(b_{3}(x)\right)=0$. Thus, since f_{5} is mono, we have $a_{4}\left(x^{\prime}\right)=0$. It follows that there is $\widehat{x} \in A_{3}$ such that $a_{3}(\widehat{x})=x^{\prime}$.

Next observe that

$$
b_{3}\left(x-f_{3}(\widehat{x})\right)=b_{3}(x)-b_{3}\left(f_{3}(\widehat{x})\right)=b_{3}(x)-f_{4}(\underbrace{a_{3}(\widehat{x})}_{=x^{\prime}})=0 .
$$

Hence there is $y \in B_{2}$ such that $b_{2}(y)=x-f_{3}(\widehat{x})$. Moreover, since f_{2} is epi, there is $\widehat{y} \in A_{2}$ such that $f_{2}(\widehat{y})=y$.

Now we have that

$$
f_{3}\left(\widehat{x}+a_{2}(\widehat{y})\right)=f_{3}(\widehat{x})+b_{2}(\underbrace{f_{2}(\widehat{y})}_{=y})=f_{3}(\widehat{x})+x-f_{3}(\widehat{x})=x,
$$

showing that an arbitrary x lies in the image of f_{3}.

Proof for arbitrary abelian categories. We only prove the first point, the second one is dual.

Let $x: X \longrightarrow A_{3}$ be a morphism such that $f_{3} \circ x=0$. Since

$$
f_{4} \circ a_{3} \circ x=b_{3} \circ f_{3} \circ x=0,
$$

and f_{4} is mono by assumption, we have $a_{3} \circ x=0$. Thus, by Proposition 13.9, we obtain \widehat{X}, \widehat{x}, and an epimorphism $\widehat{a_{2}}$ as indicated in the following diagram.

Now note that $b_{2} \circ\left(f_{2} \circ \widehat{x}\right)=0$, and that, since f_{1} is epi,

$$
A_{1} \xrightarrow{b_{1} \circ f_{1}} B_{2} \xrightarrow{b_{2}} B_{3}
$$

is exact. Hence we can find $\widehat{\hat{X}}, \widehat{f_{2} \circ \widehat{x}}$, and an epimorphism $\widehat{b_{1} \circ f_{1}}$ as indicated above, such that $b_{1} \circ f_{1} \circ \widehat{f_{2} \circ \hat{x}}=f_{2} \circ \widehat{x} \circ \widehat{b_{1} \circ f_{1}}$. Since $b_{1} \circ f_{1}=f_{2} \circ a_{1}$, and f_{2} is a monomorphism by assumption, this implies

$$
a_{1} \circ \widehat{f_{2} \circ \widehat{x}}=\widehat{x} \circ \widehat{b_{1} \circ f_{1}},
$$

and thus

$$
x \circ \widehat{a_{2}} \circ \widehat{b_{1} \circ f_{1}}=\underbrace{a_{2} \circ a_{1}}_{=0} \circ \widehat{f_{2} \circ \widehat{x}}=0 .
$$

Since $\widehat{a_{2}} \circ \widehat{b_{1} \circ f_{1}}$ is an epimorphism this means that $x=0$.
Thus we have seen that $f_{3} \circ x=0$ impies $x=0$, which means that f_{3} is a monomorphism.

Theorem 14.2 (Characterization of pullback and pushout). In an abelian category, consider a commutative square, together with its kernel and cokernel morphisms as in the following diagram.

Then

- the square is a pullback if and only if k is an isomorphism and c is a monomorphism;
- the square is a pushout if and only if k is an epimorphism and c is an isomorphism.

Proof. We only prove the first claim, the second one is dual.
Assume first that the square is a pullback. We have already seen - in Proposition 13.7- that the kernel morphism k is an isomorphism. Let $x: X \rightarrow \operatorname{Cok} f$ be a morphism such that $c \circ x=0$.

Since $B \xrightarrow{\pi} \operatorname{Cok} f \longrightarrow 0$ is exact, by Proposition 13.9, there are \hat{X}, \widehat{x}, and an epimorphism $\widehat{\pi}$ as indicated in the diagram.

Since $C \xrightarrow{i} D \xrightarrow{\rho} \operatorname{Cok} i$ is exact, and $\rho \circ(h \circ \widehat{x})=c \circ x \circ \widehat{\pi}=0$, Proposition 13.9 also implies the existence of $\widehat{\hat{X}}, \widehat{h \circ \widehat{x}}$, and an epimorphism \widehat{i} as above.

We get φ as indicated above by the pullback property of the original square.
Thus $x \circ \widehat{\pi} \circ \widehat{i}=\pi \circ f \circ \varphi=0$ implies $x=0$, and thus c is a monomorphism.

Now assume conversely that k is an isomorphism, and c a monomorphism. We have to show that the square is a pullback.

We consider the pullback of i and h, and, by the pullback property, we get
a map φ to it from A as indicated in the following diagram.

By the other implication of this theorem, we know that k^{\prime} is an isomorphism. It follows that also $k^{\prime \prime}$ is an isomorphism. Moreover, since c is mono, so is $c^{\prime \prime}$.

It now follows from the five lemma (Theorem 14.1) that φ is an isomorphism.

Theorem 14.3 (Snake lemma). In an abelian category, consider (solid part of) the following diagram with exact rows and columns

Then there is a map $\partial: \operatorname{Ker} f_{3} \longrightarrow \operatorname{Cok} f_{1}$, such that the dashed sequence

$$
\operatorname{Ker} f_{1} \longrightarrow \operatorname{Ker} f_{2} \longrightarrow \operatorname{Ker} f_{3} \xrightarrow{\partial} \operatorname{Cok} f_{1} \longrightarrow \operatorname{Cok} f_{2} \longrightarrow \operatorname{Cok} f_{3}
$$

is exact.

Proof. Construction of ∂ : Consider the pullback $A_{2} \prod_{A_{3}} \operatorname{Ker} f_{3}$, and the pushout $B_{2} \coprod_{B_{1}} \mathrm{Cok} f_{1}$. By Theorem 14.2 we have induced exact sequences

$$
A_{1} \xrightarrow{\widehat{a_{1}}} A_{2} \prod_{A_{3}} \operatorname{Ker} f_{3} \xrightarrow{\widehat{a_{2}}} \operatorname{Ker} f_{3} \longrightarrow 0
$$

and

$$
0 \longrightarrow \operatorname{Cok} f_{1} \xrightarrow{\widetilde{b_{1}}} B_{2} \coprod_{B_{1}} \operatorname{Cok} f_{1} \xrightarrow{\widetilde{b_{2}}} B_{3},
$$

as indicated in the following diagram.

We consider the composition

$$
\widetilde{\pi_{1}} \circ f_{2} \circ \widehat{\iota_{3}}
$$

in the middle of the diagram.

Note that both

$$
\left(\widetilde{\pi_{1}} \circ f_{2} \circ \widehat{\iota_{3}}\right) \circ \widehat{a_{1}}=\widetilde{b_{1}} \circ \pi_{1} \circ f_{1}=0
$$

and

$$
\widetilde{b_{2}} \circ\left(\widetilde{\pi_{1}} \circ f_{2} \circ \widehat{\iota_{3}}\right)=f_{3} \circ \iota_{3} \circ \widehat{a_{2}}=0 .
$$

Thus $\widetilde{\pi_{1}} \circ f_{2} \circ \widehat{\iota_{3}}$ factors through both $\widehat{a_{2}}$ and $\widetilde{b_{1}}$, that is we can (uniquely) find ∂ such that

$$
\widetilde{b_{1}} \circ \partial \circ \widehat{a_{2}}=\widetilde{\pi_{1}} \circ f_{2} \circ \widehat{\iota_{3}}
$$

Exactness in $\operatorname{Ker} f_{2}$: We first note that $k_{2} \circ k_{1}=0$ by functoriality of kernels. Now we aim to apply Proposition 13.9 to show exactness.

Let $x: X \longrightarrow \operatorname{Ker} f_{2}$ such that $k_{2} \circ x=0$. Then clearly also $a_{2} \circ \iota_{2} \circ x=0$. Hence, since the sequence $A_{1} \longrightarrow A_{2} \longrightarrow A_{3}$ is exact, by Proposition 13.9, there is an object \widehat{X} and morphisms $\widehat{a_{1}}$ and $\widehat{\iota_{2} \circ x}$ such that $\widehat{a_{1}}$ is epi, and $\widehat{\iota_{2} \circ x} \circ a_{1}=$ $\widehat{a_{1}} \circ \iota_{2} \circ x$, as indicated in the following diagram.

We note that $b_{1} \circ f_{1} \circ \widehat{\iota_{2} \circ x}=f_{2} \circ \iota_{2} \circ x \circ \widehat{a_{1}}=0$. Since b_{1} is mono this implies that $f_{1} \circ \widehat{\iota_{2} \circ x}=0$, so $\widehat{\iota_{2} \circ x}=\iota_{1} \circ \varphi$ for some φ as indicated by the dashed arrow above. Since

$$
\iota_{2} \circ k_{1} \circ \varphi=a_{1} \circ \iota_{1} \circ \varphi=a_{i} \circ \widehat{\iota_{2} \circ x}=\iota_{2} \circ x \circ \widehat{a_{1}},
$$

and since ι_{2} is a monomorphism, it follows that also the upper square of the diagram commutes. Now exactness in Ker f_{2} follows from Proposition 13.9 .

Exactness in $\operatorname{Ker} f_{3}$: We begin by noting that $\partial \circ k_{2}=0$: This follows form $\widetilde{b_{1}} \circ \partial \circ k_{2}=\widetilde{\pi_{1}} \circ f_{2} \circ \iota_{2}=0$, since $\widetilde{b_{1}}$ is a monomorphism.

Now we proceed showing exactness by using Proposition 13.9. Thus, let $y: \operatorname{Ker} f_{3} \longrightarrow Y$ such that $y \circ k_{2}=0$. We construct the following diagram form top to bottom:

Here we used Proposition 13.9 thrice:

- $\widetilde{Y}, \widetilde{y}$, and a monomorphism $\widetilde{\iota_{3}}$ exist since ι_{3} is a mono;
- $\widetilde{\widetilde{Y}}, \widetilde{\widetilde{y}}$, and a monomorphism \widetilde{f}_{2} exist because $\operatorname{Ker} f_{2} \xrightarrow{\iota_{2}} A_{2} \xrightarrow{f_{2}} B_{2}$ is exact, and $\left(\widetilde{y} \circ a_{2}\right) \circ \iota_{2}=\widetilde{\iota_{3}} \circ y \circ k_{2}=0$;
- $\widetilde{\widetilde{\tilde{Y}}}, \widetilde{\widetilde{\tilde{y}}}$, and a monomorphism $\widetilde{\pi_{1}}$ exist because $A_{1} \xrightarrow{f_{1}} B_{1} \xrightarrow{\pi_{1}} \operatorname{Cok} f_{1}$ is exact, and $\left(\widetilde{\widetilde{y}} \circ a_{1}\right) \circ f_{1}=\widetilde{f}_{2} \circ \widetilde{y} \circ a_{2} \circ a_{1}=0$.
We now claim that

$$
\left(\widetilde{\pi_{1}} \circ \widetilde{f_{2}} \circ \widetilde{\iota_{3}}\right) \circ y=\widetilde{\widetilde{\widetilde{y}}} \circ \partial
$$

To check this, consider the epimorphism $\widehat{a_{2}}: A_{2} \prod_{A_{3}} \operatorname{Ker} f_{3} \longrightarrow \operatorname{Ker} f_{3}$ as above. Note that we have

$$
\partial \circ \widehat{a_{2}}=\pi_{1} \circ h,
$$

where h is the unique map $A_{2} \prod_{A_{3}} \operatorname{Ker} f_{3} \longrightarrow B_{1}$ such that $b_{1} \circ h=f_{2} \circ \widehat{\iota_{3}}$.

Now we can calculate

$$
\begin{aligned}
\widetilde{\widetilde{y}} \circ \partial \circ \widehat{a_{2}} & =\widetilde{\widetilde{\widetilde{y}}} \circ \pi_{1} \circ h \\
& =\widetilde{\pi_{1}} \circ \widetilde{\widetilde{y}} \circ b_{1} \circ h \\
& =\widetilde{\pi_{1}} \circ \widetilde{\widetilde{y}} \circ f_{2} \circ \widehat{\iota_{3}} \\
& =\widetilde{\pi_{1}} \circ \widetilde{f_{2}} \circ \widetilde{y} \circ a_{2} \circ \widehat{\iota_{3}} \\
& =\widetilde{\pi_{1}} \circ \widetilde{f_{2}} \circ \widetilde{y} \circ \iota_{3} \circ \widehat{a_{2}} \\
& =\widetilde{\pi_{1}} \circ \widetilde{f_{2}} \circ \widetilde{\iota_{3}} \circ y \circ \widehat{a_{2}} .
\end{aligned}
$$

And the claim follows since $\widehat{a_{2}}$ is an epimorphism.
Now exactness of the snake sequence in $\operatorname{Ker} f_{3}$ follows from Proposition 13.9 .
Exactness in $\operatorname{Cok} f_{1}$ and $\operatorname{Cok} f_{2}$: Are dual to the two positions we have already treated.

Remark $14.4($ Construction of ∂ for $\operatorname{Mod} R)$. For an element x of $\operatorname{Ker} f_{3}$, let \widehat{x} be a preimage of $\iota_{3}(x)$ in A_{2}. Then $b_{2}\left(f_{2}(\widehat{x})\right)=f_{3}\left(a_{2}(\widehat{x})\right)=f_{3}\left(\iota_{3}(x)\right)=0$. Therefore $f_{2}(\widehat{x})$ has a preimage $\widehat{f_{2}(\widehat{x})}$ in B_{1}. We define $\partial(x)=\pi_{1}\left(\widehat{f_{2}(\widehat{x})}\right)$.

One may check that this is well-defined.

15 Exercises

Exercise II.1. Let \mathscr{A} be a pre-abelian category, and X be a finite poset. Show that any $F \in \operatorname{presh}_{\mathscr{A}} X$ has a limit and a colimit.

Exercise II.2. Consider an additive category.

- In the situation of the biproduct diagram

with id $X_{X}=\pi_{X} \circ \iota_{X}, \operatorname{id}_{Y}=\pi_{Y} \circ \iota_{Y}$, and $\operatorname{id}_{X \oplus Y}=\iota_{X} \circ \pi_{X}+\iota_{Y} \circ \pi_{Y}$: Show that π_{Y} is a cokernel of ι_{X}.
- Let $f: X \longrightarrow Y$ be a split monomorphism, which has a cokernel. Show that there is an isomorphism $\varphi: Y \longrightarrow X \oplus \operatorname{Cok} f$ making the triangle

commutative.
Exercise II.3. Let \mathscr{A} be a pre-abelian category. Show that the following are equivalent:
- \mathscr{A} is abelian;
- every monomorphism is a kernel of some morphism, and every epimorphism is a cokernel of some morphism.

Hint: First show that if a monomorphism is a kernel of some morphism, then it is in fact a kernel of its cokernel.

Exercise II.4. In an abelian category, consider a morphism $f: X \longrightarrow Y$ with its image $\operatorname{Im} f$.

- Let $e: W \rightarrow X$ be an epimorphism. Show that $\operatorname{Im}(f \circ e)=\operatorname{Im} f$.
- Let $m: Y \longmapsto Z$ be a monomorphism. Show that $\operatorname{Im}(m \circ f)=\operatorname{Im} f$.
- Assume $f=m \circ e$, with $e: X \longrightarrow I$ epi and $m: I \longrightarrow Y$ mono. Show that $I=\operatorname{Im} f$.

Exercise II.5. Consider the poset

and the morphism of $\mathbf{A b}$-valued presheaves on it

(Here " 2 " is short for "the map given by multiplication by 2 ".) Check that this is a morphism. Calculate the kernel, image, and cokernel of this morphism.
Exercise II.6. Show that, for an abelian category \mathscr{A} and a poset X, the presheaf category presh $\mathscr{A} X$ is abelian again.

Exercise II.7. In an abelian category, let $f: A \longrightarrow B$ and $g: B \rightarrow C$ be monomorphisms. Show that there is a short exact sequence

$$
0 \longrightarrow \operatorname{Cok} f \longrightarrow \operatorname{Cok} g \circ f \longrightarrow \operatorname{Cok} g \longrightarrow 0 .
$$

Remark: If we think "Cok $f=B / A ", " \operatorname{Cok} g \circ f=C / A "$, and "Cok $g=C / B "$, then this exercise gives us the isomorphism theorem $\frac{C / A}{B / A} \cong C / B$.
Exercise II. $8(3 \times 3$ Lemma). Consider the following diagram with exact rows and columns.

Show that A, B, and C also form a short exact sequence fitting into the above diagram.

Exercise II. 9 (Salamander lemma). Consider the following diagram in ModR, where $\gamma \beta=0$ and $\delta \gamma=0$.

Show that the sequence

$$
\operatorname{Ker} \gamma \alpha \longrightarrow \frac{\operatorname{Ker} \gamma}{\operatorname{Im} \beta} \longrightarrow \frac{\operatorname{Ker} \epsilon \gamma}{\operatorname{Im} \alpha+\operatorname{Im} \beta} \longrightarrow \frac{\operatorname{Ker} \delta \cap \operatorname{Ker} \epsilon}{\operatorname{Im} \gamma \alpha} \longrightarrow \frac{\operatorname{Ker} \delta}{\operatorname{Im} \gamma} \longrightarrow \frac{F}{\operatorname{Im} \epsilon \gamma}
$$

is exact.

Chapter III

Hom and \otimes

16 Hom, projectives and injectives

Let \mathscr{A} be a preadditive category, and $A \in \mathcal{O b} \mathscr{A}$. Then $\operatorname{Hom}_{\mathscr{A}}(A,-)$ and $\operatorname{Hom}_{\mathscr{A}}(-, A)$ define (additive) functors form \mathscr{A} to $\mathbf{A b}$ (covariant and contravariant, respectively).

Now let \mathscr{A} be abelian. We want to investigate what the Hom-functors do to short exact sequences.

Example 16.1. In $\mathbf{A b}$, consider the short exact sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z} /(2) \longrightarrow 0
$$

Applying $\operatorname{Hom}_{\mathbf{A b}}(\mathbb{Z} /(2),-)$ we obtain

$$
0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z} /(2) \longrightarrow 0
$$

Applying $\operatorname{Hom}_{\mathbf{A b}}(-, \mathbb{Z} / 2)$ we obtain

$$
0 \longrightarrow \mathbb{Z} /(2) \xrightarrow{\text { id }} \mathbb{Z} /(2) \xrightarrow{0} \mathbb{Z} /(2) \longrightarrow 0 .
$$

In both cases we observe that the resulting sequence is not exact any more.
However, in both cases we may note that the left map is still the kernel of the right map. We will now see that this is a general feature of Hom-functors.

Theorem 16.2 (Hom is left exact). Let \mathscr{A} be an abelian category, and let $A \in \mathcal{O b} \mathscr{A}$.

- Let $0 \longrightarrow X \longrightarrow Y \longrightarrow Z$ be exact. Then also

$$
0 \longrightarrow \operatorname{Hom}_{\mathscr{A}}(A, X) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(A, Y) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(A, Z)
$$

is exact, that is $\operatorname{Hom}_{\mathscr{A}}(A,-)$ preserves kernels.

- Let $X \rightarrow Y \longrightarrow Z \longrightarrow 0$ be exact. Then also

$$
0 \longrightarrow \operatorname{Hom}_{\mathscr{A}}(Z, A) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(Y, A) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(X, A)
$$

is exact, that is $\operatorname{Hom}_{\mathscr{A}}(-, A)$ turns cokernels into kernels.
Such functors are called left exact.
Proof. We only prove the first claim, the second one is the same for the category $\mathscr{A}^{\text {op }}$.

We denote by $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ the maps of the original sequence. We first check that $f^{*}=\operatorname{Hom}_{\mathscr{A}}(A, f)$ is injective. Let $\varphi \in \operatorname{Hom}_{\mathscr{A}}(A, X)$ such that $f^{*}(\varphi)=0$. By definition $f^{*}(\varphi)=f \circ \varphi$, and since f is a monomorphism this can only be zero if φ already is zero.

Next let $\varphi \in \operatorname{Ker} g^{*}$, that is $g \circ \varphi=0$. Then, since f is the kernel of g, there is a map $\psi: A \longrightarrow X$ such that $\varphi=f \circ \psi$, i.e. $\varphi=f^{*}(\psi) \in \operatorname{Im} f^{*}$.

Definition 16.3. A functor between two abelian categories is called exact if it preserves short exact sequences. It is called right exact if it preserves cokernels.

Observation 16.4. For a functor F between two abelian categories the following are equivalent:

- F is exact;
- F is left exact and maps epimorphisms to epimorphisms;
- F is right exact and maps monomorphisms to monomorphisms.

Definition 16.5. Let \mathscr{A} be an abelian category.

- An object P is called projective if the functor $\operatorname{Hom}_{\mathscr{A}}(P,-)$ is exact.
- An object I is called injective if the functor $\operatorname{Hom}_{\mathscr{A}}(-, I)$ is exact.

Clearly injective objects in \mathscr{A} are just projective objects in $\mathscr{A}^{\text {op }}$.
Example 16.6. In the category $\operatorname{Mod} R$, the object R is projective: Indeed the functor $\operatorname{Hom}_{R}(R,-): \operatorname{Mod} R \longrightarrow \mathbf{A b}$ is just the forgetful functor, and hence clearly is exact.

Observation 16.7. Direct sums and direct summands of projective objects are projective (and similar for injective). The zero object is projective and injective.

Observation 16.8. Let \mathscr{A} be an abelian category.

- An object P is projective if and only if any given diagram as the solid part of the following, with exact row

can be completed to a commutative diagram by a morphism as indicated by the dashed arrow.
(This is just a diagrammatic restatement of the fact that the functor $\operatorname{Hom}_{\mathscr{A}}(P,-)$ maps epimorphisms to epimorphisms.
- An object I is injective if and only if any given diagram as the solid part of the following, with exact row

can be completed to a commutative diagram by a morphism as indicated by the dashed arrow.

Recall that the free R-module on a set I is

$$
R^{(I)}=\{f: I \longrightarrow R \mid f(i) \neq 0 \text { for only finitely many } i \in I\}
$$

Theorem 16.9. Let R be a ring, P an R-module. Then the following are equivalent:

- P is projective in $\operatorname{Mod} R$;
- There is a module Q such that $P \oplus Q \cong R^{(I)}$ for some set I.

Proof. \Longrightarrow : Consider the natural map $\pi: R^{(P)} \longrightarrow P$ (the counit of the adjunction). It clearly is an epimorphism, and, since P is projective, it splits. Therefore $P \oplus \operatorname{Ker} \pi \cong R^{(P)}$.
$\Longleftarrow:$ Since $\operatorname{Hom}_{\operatorname{Mod} R}\left(R^{(I)},-\right)=\operatorname{Hom}_{\text {Set }}(I,-)$, this functor maps epimorphisms to epimorphisms. Hence $R^{(I)}$ is projective. It follows that also all direct summands of $R^{(I)}$ are projective.

Remark 16.10. It follows that for any R-module M, there is an epimorphism $P \rightarrow M$ from a projective module. (Take for instance $P=R^{(M)}$.)

It is also possible to show (but a lot more technical) that for every R-module M there is a monomorphism $M \rightsquigarrow I$ into an injective R-module.

17 Tensor products

Definition 17.1. Ler R be a ring, M a right R-module and N a left R-module. A map $\varphi: M \times N \longrightarrow A$ to an abelian group A is called R-balanced if

$$
\begin{aligned}
& \forall m \in M, n_{1}, n_{2} \in N: \varphi\left(m, n_{1}+n_{2}\right)=\varphi\left(m, n_{1}\right)+\varphi\left(m, n_{2}\right), \\
& \forall m_{1}, m_{2} \in M, n \in N: \varphi\left(m_{1}+m_{2}, n\right)=\varphi\left(m_{1}, n\right)+\varphi\left(m_{2}, n\right), \\
& \forall m \in M, n \in N, r \in R: \varphi(m r, n)=\varphi(m, r n)
\end{aligned}
$$

A tensor product is an abelian group $M \otimes_{R} N$, together with an R-balanced $\operatorname{map} t: M \times N \longrightarrow M \otimes_{R} N$, such that for any R-balanced $\varphi: M \times N \longrightarrow A$ there is a unique morphism of abelian groups $h: M \otimes_{R} N \rightarrow A$ such that $\varphi=h \circ t$.

In this situation we write $m \otimes n=t(m, n)$, and call it an elementary tensor. Note that there is no reason for t to be surjective in general, that is not all elements of the tensor product need to be elementary tensors.

Theorem 17.2. Tensor products exist and are unique up to isomorphism.
Proof. Uniqueness can be shown similarly to the proof of uniqueness of limits and colimits (see Proposition 7.3).

To prove existence we explicitly construct a tensor product. We start by considering the free abelian group $F=\mathbb{Z}^{(M \times N)}$. We have seen in Example 6.3 that

$$
\operatorname{Hom}_{\mathbf{A b}}(F, A)=\operatorname{Hom}_{\mathbf{S e t}}(M \times N, A) .
$$

Now the idea of the proof is that we alter F in such a way that in the right hand side only the R-balanced maps remain. We denote by U the abelian subgroup of F generated by all expressions of the form

$$
\begin{aligned}
& \chi_{\left(m, n_{1}+n_{2}\right)}-\chi_{\left(m, n_{1}\right)}-\chi_{\left(m, n_{2}\right)}, \\
& \chi_{\left(m_{1}+m_{2}, n\right)}-\chi_{\left(m_{1}, n\right)}-\chi_{\left(m_{2}, n\right)}, \text { and } \\
& \chi_{(m r, n)}-\chi_{(m, r n)} .
\end{aligned}
$$

Then it is immediately verified that F / U is a tensor product.
Observation 17.3. The above construction shows that, while not all elements of the tensor product are elementary tensors themselves, they are finite sums of elementary tensors.

Example 17.4. Note that both individual elementary tensors and entire tensor products can be zero, even if they don't "look like it":

Consider $\mathbb{Z} /(2) \otimes_{\mathbb{Z}} \mathbb{Z} /(3)$. Take an elementary tensor $(a+(2)) \otimes(b+(3))$. Then

$$
\begin{aligned}
(a+(2)) \otimes(b+(3)) & =(a+(2)) \otimes 2(2 b+(3)) \\
& =(a+(2)) 2 \otimes(2 b+(3)) \\
& =0 \otimes(2 b+(3)) \\
& =0 \otimes 0(2 b+(3)) \\
& =0 \otimes 0
\end{aligned}
$$

Thus all elementary tensors vanish, and hence the entire tensor product is zero.
Construction 17.5. Let $f: M_{1} \longrightarrow M_{2}$ be a morphism of right R-modules, and N be a left R-module. Then the composition along the top and right of the following diagram is R-balanced.

Thus there is a unique map as indicated by the dashed arrow above, making the diagram commutative. We denote this map by $f \otimes_{R} N$. One immediately verifies that

$$
-\otimes_{R} N: \operatorname{Mod} R \longrightarrow \mathbf{A b}
$$

defines a functor.
Similarly, for a right R-module M one obtains a functor

$$
M \otimes_{R}-: \operatorname{Mod} R^{\mathrm{op}} \longrightarrow \mathbf{A b}
$$

Example 17.6. Let R be any ring, and $M \in \operatorname{Mod} R$. Then

$$
M \otimes_{R} R \cong M
$$

Indeed the map $M \times R \longrightarrow M:(m, r) \longmapsto m r$ is clearly R-balanced, thus induces a homomorphism $M \otimes_{R} R \rightarrow M$. An inverse is given by $M \longrightarrow M \otimes_{R} R: m \longmapsto m \otimes$ 1.

18 Hom-tensor adjunction

Let M be an R-S-bimodule. Then for any R-module L, the tensor product $L \otimes_{R} M$ becomes an S-module via $(l \otimes m) s=l \otimes m s$. In fact we obtain a functor

$$
-\otimes_{R} M: \operatorname{Mod} R \longrightarrow \operatorname{Mod} S
$$

Similarly we have the functor

$$
\operatorname{Hom}_{S}(M,-): \operatorname{Mod} S \longrightarrow \operatorname{Mod} R,
$$

where, for an S-module N, the R-module structure on $\operatorname{Hom}_{S}(M, N)$ is given by $\varphi \cdot r=\varphi(r \cdot-)$.

The following result shows that these two functors are in fact adjoint.
Theorem 18.1. Let L be an R-module, M be an R - S-bimodule, and N be an S-module. Then

$$
\operatorname{Hom}_{S}\left(L \otimes_{R} M, N\right) \cong \operatorname{Hom}_{R}\left(L, \operatorname{Hom}_{S}(M, N)\right)
$$

and this isomorphism is natural in all arguments.

Proof. We have mutually inverse maps given by

Corollary 18.2. Let M be an R-S-bimodule. Then the functor
$-\otimes_{R} M: \operatorname{Mod} R \longrightarrow \operatorname{Mod} S$
is right exact.
Proof. Since the functor is left adjoint to $\operatorname{Hom}_{S}(M,-)$ it commutes with all colimits. But cokernels are certain colimits.

Remark 18.3. The above argument also shows that tensor products commute with (infinite) coproducts.

Definition 18.4. A left R-module M is called flat if the tensor functor $-\otimes_{R}$ $M: \operatorname{Mod} R \longrightarrow \mathbf{A b}$ is exact.

Observation 18.5. - The R-module R is flat, since, by Example 17.6 tensoring with R is essentially identity.

- Any free R-module is flat, since, by Remark 18.3 tensoring commutes with coproducts (which are special colimits), and since the coproduct of a collection of exact sequences is exact again.
- Any projective R-module is flat, since it is a direct summand of a free R-module by Theorem 16.9 .

Remark 18.6. The converse of the last point above does not hold. For instance \mathbb{Q} is a flat \mathbb{Z} module which is not projective.

However, for certain nice rings (for instance finite dimensional algebras over a field), all flat modules are projective.

19 Exercises

Exercise III.1. Let X be a poset, and \mathbb{F} a field. By Exercise II.6 the category $\operatorname{presh}_{\bmod \mathbb{F}} X$ is abelian.

For $i \in X$, we consider the special presheaves P_{i} and I_{i} given by

$$
P_{i}(j)=\left\{\begin{array}{ll}
\mathbb{F} & \text { if } j \leqslant i \\
0 & \text { otherwise }
\end{array} \text { and } I_{i}(j)=\left\{\begin{array}{ll}
k & \text { if } j \geqslant i \\
0 & \text { otherwise }
\end{array} .\right.\right.
$$

Path I:

Verify directly: P_{i} is projective and I_{i} is injective in $\operatorname{presh}_{\bmod \mathbb{F}} X$.
Path II:
Consider inclusion $\iota:\{i\} \hookrightarrow X$. Show that the induced functor

$$
\iota^{*}: \operatorname{presh}_{\bmod \mathbb{F}} X \longrightarrow \operatorname{presh}_{\bmod \mathbb{F}}\{i\}=\bmod \mathbb{F}
$$

has a left adjoint L and a right adjoint R.
Check that

- ι^{*} is exact;
- $P_{i}=L \mathbb{F}$ and $I_{i}=R \mathbb{F}$;
- \mathbb{F} is both projective and injective in $\bmod \mathbb{F}$.

Conclude that P_{i} is projective and I_{i} is injective.
Independent of path: For $X=\{a>0<b\}$: Find a projective object P and an epimorphism $P \longrightarrow I_{0}$ in $\operatorname{presh}_{\bmod \mathbb{F}} X$.

Exercise III.2. Show that

$$
\mathbb{Z} /(m) \otimes_{\mathbb{Z}} \mathbb{Z} /(n)=\mathbb{Z} /(\operatorname{gcd}(m, n))
$$

Hint: Recall that $(\operatorname{gcd}(m, n))=(m, n)$.
Exercise III.3. Let $L \in \operatorname{Mod} R, M$ an R - S-bimodule, and $N \in \operatorname{Mod} S^{\circ \mathrm{op}}$.
Show

$$
\left(L \bigotimes_{R} M\right) \bigotimes_{S} N \cong L \bigotimes_{R}\left(M \bigotimes_{S} N\right) .
$$

Hint: On elementary tensors, the map from left to right should send $(l \otimes m) \otimes n$ to $l \otimes(m \otimes n)$. The main issue is to show that this gives a well-defined map.

Exercise III.4. Let \mathscr{A} be an abelian category, and A an object in \mathscr{A}. Convince yourself that $\operatorname{Hom}_{\mathscr{A}}(A,-)$ defines a functor $\mathscr{A} \longrightarrow \operatorname{Mod} R$, where $R=\operatorname{End}_{\mathscr{A}}(A)$.

Now assume that for any object $X \in \mathscr{A}$, the R-module $\operatorname{Hom}_{\mathscr{A}}(A, X)$ is finitely generated. Show (without using the Freyd-Mitchell embedding theorem), that $\operatorname{Hom}_{\mathscr{A}}(A,-): \mathscr{A} \longrightarrow \bmod R$ has a left adjoint.

Hints:

- Show that $\operatorname{Hom}_{\mathscr{A}}(A,-)$ induces an equivalence between the subcategories $\left\{A^{n} \mid n \in \mathbb{N}\right\} \subseteq \mathscr{A}$ and $\left\{R^{n} \mid n \in \mathbb{N}\right\} \subseteq \bmod R$.
- Show that $\operatorname{Hom}_{\mathscr{A}}(A, X)$ is finitely presented as R-module.

Chapter IV

Complexes and homology

20 The long exact sequence of homology

Definition 20.1. Let \mathscr{A} be an abelian category. A (cochain) complex in \mathscr{A} is a sequence of objects and morphisms

$$
A^{\bullet}=\cdots \xrightarrow{d^{-2}} A^{-1} \xrightarrow{d^{-1}} A^{0} \xrightarrow{d^{0}} A^{1} \xrightarrow{d^{1}} \cdots
$$

such that $d^{i} \circ d^{i-1}=0$ for all $i \in \mathbb{Z}$.
We denote by $\mathbf{C}(\mathscr{A})$ the category of all complexes in \mathscr{A}, where morphisms are given by

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{C}(\mathscr{A})}\left(A^{\bullet}, B^{\bullet}\right)=\left\{\left(f^{i}\right)_{i \in \mathbb{Z}}\right. & \mid f^{i} \in \operatorname{Hom}_{\mathscr{A}}\left(A^{i}, B^{i}\right) \text { such that } \\
& \left.f^{i} \circ d_{A}^{i-1}=d_{B}^{i-1} \circ f^{i-1} \forall i \in \mathbb{Z}\right\},
\end{aligned}
$$

that is morphisms are commutative diagrams

Note that the category $\mathbf{C}(\mathscr{A})$ is also abelian, with kernels and cokernels being calculated position by position.

Remark 20.2. One defines chain complexes in a very similar way, just using lower indices and counting down. This distinction comes from the origins of homological algebra in algebraic topology, where the index often is the dimension of the objects involved. Thus it is natural that the boundary of an n-dimensional object is n-1-dimensional (chain complex) and not the other way around (thus called cochain complex).

However in our course a complex is just an abstract sequence of objects and maps, and thus the difference between counting up and counting down is of no concern to us.

Definition 20.3. For a complex A^{\bullet}, and $n \in \mathbb{Z}$, we set

$$
\mathrm{B}^{n}\left(A^{\bullet}\right)=\operatorname{Im} d^{n-1} \text { and } \mathrm{Z}^{n}\left(A^{\bullet}\right)=\operatorname{Ker} d^{n},
$$

called the n-boundaries and n-cycles, respectively.
Note that since, by definition, $d^{n} \circ d^{n-1}=0$, the inclusion $\mathrm{B}^{n}\left(A^{\bullet}\right) \hookrightarrow A^{n}$ factors through the inclusion $\mathrm{Z}^{n}\left(A^{\bullet}\right) \hookrightarrow A^{n}$. We denote by $\mathrm{H}^{n}\left(A^{\bullet}\right)$ the cokernel of this map $\mathrm{B}^{n}\left(A^{\bullet}\right) \hookrightarrow \mathrm{Z}^{n}\left(A^{\bullet}\right)$, and call it n-th homology of A^{\bullet}.

Note that all three of these constructions are functorial.
Remark 20.4. In case that our abelian category \mathscr{A} is in fact a category of modules (or any other category where it makes sense to talk about 'elements' of the objects) the above just means that $\mathrm{B}^{n}\left(A^{\bullet}\right)$ and $\mathrm{Z}^{n}\left(A^{\bullet}\right)$ are submodules of A^{n}, such that $\mathrm{B}^{n}\left(A^{\bullet}\right) \subseteq \mathrm{Z}^{n}\left(A^{\bullet}\right)$. Now homology is the quotient

$$
\mathrm{H}^{n}\left(A^{\bullet}\right)=\mathrm{Z}^{n}\left(A^{\bullet}\right) / \mathrm{B}^{n}\left(A^{\bullet}\right) .
$$

There are obvious duals to the definition of boundaries, cycles, and homology. (These are not what is called coboundaries, cocycles, and cohomology coboundaries are just the same as boundaries, but distinguishing between counting up and counting down, see Remark 20.2.) However the next lemma tells us that for homology it does not matter if we take this definition or its dual.

Lemma 20.5. Let A^{\bullet} be a complex in an abelian category. Then the epimorphism $A^{n} \rightarrow \mathrm{~B}^{n+1}\left(A^{\bullet}\right)$ factors through the epimorphism $A^{n} \rightarrow \operatorname{Cok} d^{n-1}$, and

$$
\mathrm{H}^{n}\left(A^{\bullet}\right)=\operatorname{Ker}\left[\operatorname{Cok} d^{n-1} \longrightarrow \mathrm{~B}^{n+1}\left(A^{\bullet}\right)\right] .
$$

Proof. The factorization follows form $d^{n} \circ d^{n-1}=0$.

Now consider the following diagram, where K denotes the kernel of the lemma.

By the snake lemma we have a snake morphism as indicated by the dashed arrow, and it is an isomorphism since both its kernel and cokernel are zero.

Theorem 20.6 (Long exact sequence of homology). Let $A^{\bullet} \hookrightarrow B^{\bullet} \rightarrow C^{\bullet}$ be a short exact sequence in $\mathbf{C}(\mathscr{A})$, for some abelian category \mathscr{A}. Then there is a long exact sequence

$$
\cdots \longrightarrow \mathrm{H}^{n}\left(A^{\bullet}\right) \longrightarrow \mathrm{H}^{n}\left(B^{\bullet}\right) \longrightarrow \mathrm{H}^{n}\left(C^{\bullet}\right) \longrightarrow \mathrm{H}^{n+1}\left(A^{\bullet}\right) \longrightarrow \mathrm{H}^{n+1}\left(B^{\bullet}\right) \longrightarrow \cdots .
$$

Proof. Note that Z^{n} is left exact, and $\operatorname{Cok} d^{n}$ is right exact. Thus we get exact sequences in the rows of the following commutative diagram.

where the vertical maps are induced by the maps d_{A}^{n}, d_{B}^{n}, and d_{C}^{n}, respectively. In particular they are the composition $\operatorname{Cok} d_{A}^{n-1} \rightarrow \mathrm{~B}^{n+1}\left(A^{\bullet}\right) \hookrightarrow \mathrm{Z}^{n+1}\left(A^{\bullet}\right)$, and similar for B^{\bullet} and C^{\bullet}. Thus their cokernels are $\mathrm{H}^{n+1}\left(A^{\bullet}\right), \mathrm{H}^{n+1}\left(B^{\bullet}\right)$, and $\mathrm{H}^{n+1}\left(C^{\bullet}\right)$, respectively. Moreover, by Lemma 20.5, the kernels are $\mathrm{H}^{n}\left(A^{\bullet}\right)$, $\mathrm{H}^{n}\left(B^{\bullet}\right)$, and $\mathrm{H}^{n}\left(C^{\bullet}\right)$, respectively. Now the claim follows from the snake lemma.

21 Cones and quasi-isomorphisms

In the setup of Theorem 20.6, one easily sees that the maps $\mathrm{H}^{n}\left(A^{\bullet}\right) \longrightarrow \mathrm{H}^{n}\left(B^{\bullet}\right)$ and $\mathrm{H}^{n}\left(B^{\bullet}\right) \longrightarrow \mathrm{H}^{n}\left(C^{\bullet}\right)$ are just homologies of the original maps in $\mathbf{C}(\mathscr{A})$. However the maps $\mathrm{H}^{n}\left(C^{\bullet}\right) \longrightarrow \mathrm{H}^{n+1}\left(A^{\bullet}\right)$ are induced by the snake morphism of the snake lemma, and their description is less explicite. We make it explicite here in the special case that all the short exact sequences $A^{n} \longrightarrow B^{n} \rightarrow C^{n}$ are split.

Observation 21.1. Let $A^{\bullet} \leadsto B^{\bullet} \rightarrow C^{\bullet}$ be a short exact sequence in $\mathbf{C}(\mathscr{A})$, such that

$$
\forall n: B^{n}=A^{n} \oplus C^{n}
$$

and the maps are given by $\binom{1}{0}$ and (01), respectively.
Then d_{B}^{n} is given by a 2×2-matrix, say $\left(\begin{array}{cc}a^{n} & f^{n} \\ b^{n} & c^{n}\end{array}\right)$.
In order for the first map to be a morphism of complexes we need

$$
d_{B}^{n} \circ\binom{1}{0}=\binom{1}{0} \circ d_{A}^{n},
$$

that is $a^{n}=d_{A}^{n}$ and $b^{n}=0$. Similarly, in order for the second map to be a morphism of complexes we need $b^{n}=0$ and $c^{n}=d_{C}^{n}$.

Finally we require $d_{B}^{n} \circ d_{B}^{n-1}=0$, with the above that gives

$$
0=\left(\begin{array}{cc}
d_{A}^{n} & f^{n} \\
0 & d_{C}^{n}
\end{array}\right) \circ\left(\begin{array}{cc}
d_{A}^{n-1} & f^{n-1} \\
0 & d_{C}^{n-1}
\end{array}\right)=\left(\begin{array}{cc}
0 & f^{n} \circ d_{C}^{n-1}+d_{A}^{n} \circ f^{n-1} \\
0 & 0
\end{array}\right)
$$

that is $f^{n} \circ\left(-d_{C}^{n-1}\right)=d_{A}^{n} \circ f^{n-1}$.
Conversely we see that any family $\left(f^{n}\right)_{n \in \mathbb{Z}}$ with this property gives rise to a short exact sequence as above.

Definition 21.2 (Shift). Let A^{\bullet} be a complex. We denote by $A^{\bullet}[n]$ the complex obtained from A^{\bullet} by shifting every term n places to the left, that is with

$$
\left(A^{\bullet}[n]\right)^{i}=A^{i+n}, \text { and } d_{A \bullet[n]}^{i}=(-1)^{n} d_{A \bullet}^{n+i} .
$$

Clearly $[n]$ defines an autoequivalence of $\mathbf{C}(\mathscr{A})$, with inverse $[-n]$. Also note that $\mathrm{H}^{i}\left(A^{\bullet}[n]\right)=\mathrm{H}^{i+n}\left(A^{\bullet}\right)$.

Definition 21.3 (Cone). Let $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ be a morphism in $\mathbf{C}(\mathscr{A})$. Then the cone Cone $\left(f^{\bullet}\right)$ is the complex

$$
\ldots \xrightarrow{\left(\begin{array}{cc}
d_{B}^{-2} & f^{-1} \\
0 & -d_{A}^{-1}
\end{array}\right)} B^{-1} \oplus A^{0} \xrightarrow{\left(\begin{array}{cc}
d_{B}^{-1} & f^{0} \\
0 & -d_{A}^{0}
\end{array}\right)} B^{0} \oplus A^{1} \xrightarrow{\left(\begin{array}{cc}
d_{B}^{0} & f^{1} \\
0 & -d_{A}^{1}
\end{array}\right)} \ldots .
$$

By Observation 21.1 above we note that there is a degree-wise split short exact sequence

$$
B^{\bullet} \stackrel{\binom{1}{0}}{ } \operatorname{Cone}\left(f^{\bullet}\right) \xrightarrow{(01)} A^{\bullet}[1] .
$$

Moreover any degree-wise split short exact sequence is of this form.

Theorem 21.4. Let $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ be a morphism in $\mathbf{C}(\mathscr{A})$. The long exact sequence of homology associated to the short exact sequence

$$
B^{\bullet} \xrightarrow{\binom{1}{0}} \operatorname{Cone}\left(f^{\bullet}\right) \xrightarrow{\left(\begin{array}{ll}
(01) \\
\bullet
\end{array} A^{\bullet}[1]\right.}
$$

is

$$
\ldots \longrightarrow \mathrm{H}^{n}\left(A^{\bullet}\right) \xrightarrow{\mathrm{H}^{n}(f \bullet)} \mathrm{H}^{n}\left(B^{\bullet}\right) \xrightarrow{\mathrm{H}^{n}\binom{1}{0}} \mathrm{H}^{n}\left(\operatorname{Cone}\left(f f^{\bullet}\right)\right) \xrightarrow{\mathrm{H}^{n}(01)} \mathrm{H}^{n+1}\left(A^{\bullet}\right) \longrightarrow \cdots
$$

Proof. The fact that the second and third map are just the homologies of the maps of complexes we started with follows immediately from the construction of the long exact sequence. We need to check that the first map is indeed the n-th homology of the map f^{\bullet}.

We follow the construction. To do so, we consider the following diagram with exact rows, but not columns, where the middle part is just the diagram
from the proof of Theorem 20.6 .

Note that the composition along the columns are just the differentials d_{B}^{n}, $\left(\begin{array}{cc}d_{B}^{n} & f^{n+1} \\ 0 & -d_{A}^{n+1}\end{array}\right)$, and $-d_{A}^{n+1}$, respectively.

Now recall the construction of the snake map from the snake lemma: Using the splitting indicated by the dashed arrows above, we first consider the composition

$$
\begin{aligned}
\mathrm{Z}^{n+1}\left(A^{\bullet}\right) & \longrightarrow A^{n+1} \xrightarrow{\binom{0}{1}} B^{n} \oplus A^{n+1} \xrightarrow{\left(\begin{array}{cc}
d_{B}^{n} & f^{n+1} \\
0 & -d_{A}^{n+1}
\end{array}\right)} B^{n+1} \oplus A^{n+2} \\
& \xrightarrow{(10)} B^{n+1} \longrightarrow \operatorname{Cok} d_{B}^{n} .
\end{aligned}
$$

Multiplying the matrices we see that this is the composition

$$
\mathrm{Z}^{n+1}\left(A^{\bullet}\right) \longmapsto A^{n+1} \xrightarrow{f^{n+1}} B^{n+1} \longrightarrow \operatorname{Cok} d_{B}^{n}
$$

Thus the induced map on homology is

$$
\mathrm{H}^{n+1}\left(f^{\bullet}\right): \mathrm{H}^{n+1}\left(A^{\bullet}\right) \longrightarrow \mathrm{H}^{n+1}\left(B^{\bullet}\right) .
$$

Definition 21.5. A morphism $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ in $\mathbf{C}(\mathscr{A})$ is called quasi-isomorphism if $\mathrm{H}^{n}\left(f^{\bullet}\right)$ is an isomorphism for all n.

Corollary 21.6. Let $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ be a morphism in $\mathbf{C}(\mathscr{A})$. Then f^{\bullet} is a quasi-isomorphism if and only if the complex $\operatorname{Cone}\left(f^{\bullet}\right)$ is exact.

22 Homotopy

Definition 22.1. A morphism $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ in $\mathbf{C}(\mathscr{A})$ is called null-homotopic if there are morphisms

$$
h^{n} \in \operatorname{Hom}_{\mathscr{A}}\left(A^{n}, B^{n-1}\right) \quad n \in \mathbb{Z}
$$

such that

$$
\forall n \in \mathbb{Z}: f^{n}=d_{B}^{n-1} \circ h^{n}+h^{n+1} \circ d_{A}^{n}
$$

Two morphisms f^{\bullet} and g^{\bullet} in $\operatorname{Hom}_{\mathbf{C}(\mathscr{A})}\left(A^{\bullet}, B^{\bullet}\right)$ are called homotopic if $f^{\bullet}-$ g^{\bullet} is null-homotopic.

Lemma 22.2. Let $A^{\bullet} \xrightarrow{e^{\bullet}} B^{\bullet} \xrightarrow{f^{\bullet}} C^{\bullet} \xrightarrow{g^{\bullet}} D^{\bullet}$ be morphisms in $\mathbf{C}(\mathscr{A})$. If f^{\bullet} is null-homotopic, then so is the composition $g^{\bullet} \circ f \bullet \circ e^{\bullet}$.
Proof. By definition we have maps h^{i} such that $f^{n}=d_{C}^{n-1} \circ h^{n}+h^{n+1} \circ d_{B}^{n}$. We choose $\widetilde{h}^{n}=g^{n-1} \circ h^{n} \circ e^{n}$. Then

$$
\begin{aligned}
d_{D}^{n-1} \circ \widetilde{h}^{n}+\widetilde{h}^{n+1} \circ d_{A}^{n} & =\underbrace{d_{D}^{n-1} \circ g^{n-1}}_{=g^{n} \circ d_{C}^{n-1}} \circ h^{n} \circ e^{n}+g^{n} \circ h^{n+1} \circ \underbrace{e^{n+1} \circ d_{A}^{n}}_{=d_{B}^{n} \circ e^{n}} \\
& =g^{n} \circ\left(d_{C}^{n-1} \circ h^{n}+h^{n+1} \circ d_{B}^{n}\right) \circ e^{n} \\
& =g^{n} \circ f^{n} \circ e^{n}
\end{aligned}
$$

Definition 22.3. Let \mathscr{A} be an abelian category. The homotopy category $\mathbf{K}(\mathscr{A})$ is given by

$$
\begin{aligned}
& \mathcal{O b}_{\mathbf{K}(\mathscr{A})}=\mathcal{O b}_{\mathbf{6}(\mathscr{A}) \quad \text { and }} \\
& \operatorname{Hom}_{\mathbf{K}(\mathscr{A})}\left(A^{\bullet}, B^{\bullet}\right)=\frac{\operatorname{Hom}_{\mathbf{C}(\mathscr{A})}\left(A^{\bullet}, B^{\bullet}\right)}{\text { homotopy }}
\end{aligned}
$$

that is morphisms are considered the same if their difference is null-homotopic.
Lemma 22.2 shows that this indeed is a category, by making sure that multiplication of morphisms is well-defined.

It follows from the definition that $\mathbf{K}(\mathscr{A})$ inherits the structure of an additive category from $\mathbf{C}(\mathscr{A})$ - the Hom-sets are by definition quotient abelian groups. However $\mathbf{K}(\mathscr{A})$ will typically not be abelian.

Proposition 22.4. Let $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ be null-homotopic. Then $\mathrm{H}^{n}\left(f^{\bullet}\right)=0$ for all $n \in \mathbb{Z}$.

In particular the H^{n} define functors $\mathbf{K}(\mathscr{A}) \longrightarrow \mathscr{A}$.
Proof. By assumption there are h^{n} such that $f^{n}=d_{B}^{n-1} \circ h^{n}+h^{n+1} \circ d_{A}^{n}$.
First let $\iota_{A}: \mathrm{Z}^{n}\left(A^{\bullet}\right) \hookrightarrow A^{n}$, and similar for ι_{B}. Then $\mathrm{Z}^{n}\left(f^{\bullet}\right)$ is defined by

$$
\iota_{B} \circ \mathrm{Z}^{n}(f \bullet)=f^{n} \circ \iota_{A}
$$

Inserting the above formula for f^{n} we obtain that this is equal to

$$
d_{B}^{n-1} \circ h^{n} \circ \iota_{A}+h^{n+1} \circ \underbrace{d_{A}^{n} \circ \iota_{A}}_{=0}=d_{B}^{n-1} \circ h^{n} \circ \iota_{A} .
$$

Now note that this map clearly factors through $\mathrm{B}^{n}\left(B^{\bullet}\right) \hookrightarrow B^{n}$, and thus the induced map on homology vanishes.

23 Projective and injective resolutions

Definition 23.1. An abelian category \mathscr{A} has enough projectives if for any $A \in \mathcal{O b} \mathscr{A}$ there is an epimorphism $P \rightarrow A$ from a projective object P to A.

Dually \mathscr{A} has enough injectives if for any $A \in \mathcal{O b} \mathscr{A}$ there is a monomorphism $A \hookrightarrow I$ from A to some injective object I.

Example 23.2. Let R be a ring. The category $\operatorname{Mod} R$ has enough projectives and enough injectives.

Proposition 23.3. Let (X, \leqslant) be a finite partially ordered set, and \mathscr{A} an abelian category.

If \mathscr{A} has enough projectives, then so does $\operatorname{presh}_{\mathscr{A}} X$. Dually, if \mathscr{A} has enough injectives, then so does $\operatorname{presh}_{\mathscr{A}} X$.

Proof. We show that presh $\mathscr{A} X$ has enough projectives, the claim about injectives is dual. For a $A \in \mathcal{O b} \mathscr{A}$ and $i \in X$ we define a presheaf P_{i}^{A} by

$$
P_{i}^{A}(j)=\left\{\begin{array}{ll}
A & \text { if } j \leqslant i \\
0 & \text { otherwise } .
\end{array} .\right.
$$

One easily sees that

$$
\operatorname{Hom}_{\operatorname{presh}_{\mathscr{A}} X}\left(P_{i}^{A}, M\right)=\operatorname{Hom}_{\mathscr{A}}(A, M(i)) .
$$

Therefore P_{i}^{A} is projective provided A is projective in \mathscr{A}.
Now let M be an arbitrary \mathscr{A}-valued presheaf on X. For $i \in X$, let $A_{i} \rightarrow M(i)$ be an epimorphism from a projective object in \mathscr{A}. We set $P=$ $\bigoplus_{i \in X} P_{i}^{A_{i}}$. Then P is projective, and there is an epimorphism $P \rightarrow M$ in $\operatorname{presh}_{\mathscr{A}} X$.

Definition 23.4. Let \mathscr{A} be an abelian category with enough projectives, and let $A \in \mathscr{A}$. A projective resolution of A is a complex

$$
\ldots \longrightarrow P^{-2} \xrightarrow{d^{-2}} P^{-1} \xrightarrow{d^{-1}} P^{0} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots
$$

with projective terms, which is exact, except in postion 0 , where $\operatorname{Cok} d^{-1}=A$.
Dually, if \mathscr{A} has enough injectives then an injective resolution of A is a complex

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow I^{0} \xrightarrow{d^{0}} I^{1} \xrightarrow{d^{1}} I^{2} \longrightarrow \cdots
$$

with injective terms, which is exact, except in position 0 , where $\operatorname{Ker} d^{0}=A$.
Observation 23.5. Let \mathscr{A} be an abelian category with enough projectives. Then any object $A \in \mathscr{A}$ has a projective resolution. This can be constructed iteratedly: Start with an epimorphism $P^{0} \rightarrow A$, and call A^{-1} its kernel. Given A^{i}, take an epimorphism $P^{i} \rightarrow A^{i}$, and call A^{i-1} its kernel. Concatenating these short exact sequences we obtain a projective resolution.

Dually, if \mathscr{A} has enough injectives, then any object has an injective resolution.

Construction 23.6. Let A and B be objects in an abelian category having enough projectives. Let P_{A}^{\bullet} and P_{B}^{\bullet} be projective resolutions of A and B, respectively. Given a morphism $A \xrightarrow{f} B$, we construct (non-canonically) a morphism $P_{f}^{\bullet}: P_{A}^{\bullet} \longrightarrow P_{B}^{\bullet}$ such that $H^{0}\left(P_{f}^{\bullet}\right)=f:$

In the diagram below we construct the vertical morphisms from right to left, starting with the given morphism f, such that everything commutes.

Here we obtain the morphisms $P_{A}^{-n} \longrightarrow P_{B}^{-n}$ using that P_{A}^{-n} is projective, and thus the composition $P_{A}^{-n} \rightarrow A^{-n} \longrightarrow B^{-n}$ may be factored through the epimorphism $P_{B}^{-n} \rightarrow B^{-n}$. The morphisms $A^{-n} \rightarrow B^{-n}$ are kernel morphisms.
Theorem 23.7. Let \mathscr{A} have enough projectives. Then taking projective resolutions defines a functor

$$
\mathrm{p}: \mathscr{A} \longrightarrow \mathbf{K}(\mathscr{A}),
$$

such that $\mathrm{H}^{0} \circ \mathrm{p}=\mathrm{id}_{\mathscr{A}}$ and $\mathrm{H}^{n} \circ \mathrm{p}=0$ for $n \neq 0$.
Dually, if \mathscr{A} has enough injectives we can define an injective resolution functor

$$
\text { i: } \mathscr{A} \longrightarrow \mathbf{K}(\mathscr{A}),
$$

such that $\mathrm{H}^{0} \circ \mathrm{i}=\mathrm{id}_{\mathscr{A}}$ and $\mathrm{H}^{n} \circ \mathrm{i}=0$ for $n \neq 0$.
Proof. We have to show that there is a unique map $P_{f}^{\mathbf{\bullet}}: P_{A}^{\bullet} \longrightarrow P_{B}^{\mathbf{\bullet}}$ as in the construction above, for any $f: A \longrightarrow B$. Taking differences it is enough to show this for $f=0$.

So consider the solid part of the following commutative diagram

Since the composition of f^{0} with the epimorphism $P_{B}^{0} \rightarrow B$ vanishes we see that f^{0} factors as indicated by the rightmost dotted map above. Moreover, since P_{A}^{0} is projective, we can lift this dotted map along the epimorphism $P_{B}^{-1} \rightarrow B^{-1}$ to obtain a map h^{0} as above such that $d_{P_{B}}^{-1} \circ h^{0}=f^{0}$.

Now observe that $d_{P_{B}}^{-1} \circ\left(f^{-1}-h^{0} \circ d_{P_{A}}^{-1}\right)=d_{P_{B}}^{-1} \circ f^{-1}-f^{0} \circ d_{P_{A}}^{-1}=0$. Thus $f^{-1}-h^{0} \circ d_{P_{A}}^{-1}$ factors through the kernel $B^{-2} \hookrightarrow P_{B}^{-1}$ as indicated by the second dotted arrow. Since P_{A}^{-1} is projective we may lift this along the epimorphism $P_{B}^{-2} \rightarrow B^{-2}$, and obtain a morphism h^{-1} such that $d_{P_{B}}^{-2} \circ h^{-1}=f^{-1}-h^{0} \circ d_{P_{A}}^{-1}$, or, in other words,

$$
f^{-1}=h^{0} \circ d_{P_{A}}^{-1}+d_{P_{B}}^{-2} \circ h^{-1} .
$$

We iterate this construction to obtain a homotopy, thus showing that the map of complexes we started with is in fact null-homotopic.

Proposition 23.8 (Horseshoe lemma). Let $A \hookrightarrow B \rightarrow C$ be a short exact sequence in an abelian category. Assume P_{A}^{\bullet} and P_{C}^{\bullet} are projective resolutions of A and C, respectively. Then there is a projective resolution P_{B}^{\bullet} with $P_{B}^{i}=P_{A}^{i} \oplus P_{C}^{i}$, such that the following diagram commutes:

Remark 23.9. In other words, the horseshoe lemma says that P_{B}^{\bullet} may be chosen as the cone of a certain map from $P_{C}^{\bullet}[-1]$ to P_{A}^{\bullet}.
Proof. It suffices to consider the first step, and then iterate. Let us denote the given maps by $A \stackrel{a}{\longrightarrow} B \xrightarrow{b} C$, and $\pi_{A}: P_{A}^{0} \rightarrow A$ and $\pi_{C}: P_{C}^{0} \rightarrow C$. Since P_{C}^{0} is projective there is a map $\tilde{\pi_{C}}: P_{C}^{0} \rightarrow B$ such that $b \circ \tilde{\pi_{C}}=\pi_{C}$. It follows that $\left(a \circ \pi_{A} \tilde{\pi_{C}}\right)$ is a map $P_{A}^{0} \oplus P_{C}^{0} \longrightarrow B$ making the right part of the diagram above commutative. It follows from the five lemma (Theorem 14.1) that this also is an epimorphism.

Finally note that, by the snake lemma, the kernels also form a short exact sequence, so we may iterate the argument.

24 Exercises

Exercise IV.1. Consider the poset

and the complex of $\mathbf{A b}$-valued presheaves on it

(Here " 2 " is short for "the map given by multiplication by 2 ".)
Calculate all homologies of this complex.
Exercise IV.2. Let \mathscr{A} be an abelian category. Consider a morphism of complexes over \mathscr{A}, of the form

Assume this is a quasi-isomorphism.
Show that $B^{0} \cong B^{-1} \oplus A^{0}$, such that the two non-zero maps above are the canonical inclusions.

Exercise IV.3. Consider the X as below, and a field \mathbb{F}. Calculate a projective resolution of I_{ω} in presh $\bmod _{\mathbb{F}} X$ (see Exercise III.1).

1. For $X=\{0<\omega\}$;
2. For $\left.X=\left\{a^{\prime}\right\rangle_{0}^{\omega} b\right\}$.

Exercise IV.4. Let $A^{\bullet} \in \mathbf{C}(\mathscr{A})$ be a complex such that $\mathrm{H}^{i}\left(A^{\bullet}\right)=0$ for all negative i. Show that there is a complex B^{\bullet} such that $B^{i}=0$ for all negative i, and a quasi-isomorphism $A^{\bullet} \longrightarrow B^{\bullet}$.

Hint: You can take $B^{i}=A^{i}$ for all positive i. What is a good choice for B^{0} ?

Exercise IV.5. Let $f^{\bullet}: A^{\bullet} \longrightarrow B^{\bullet}$ be a morphism of complexes. Show that $B^{\bullet} \longrightarrow \operatorname{Cone}\left(f^{\bullet}\right)$ is a weak cokernel of f^{\bullet} in the homotopy category $\mathbf{K}(\mathscr{A})$.

That is, the composition $A^{\bullet} \xrightarrow{f^{\bullet}} B^{\bullet} \longrightarrow \operatorname{Cone}\left(f^{\bullet}\right)$ is zero, and for any morphism $g^{\bullet}: B^{\bullet} \longrightarrow C^{\bullet}$ such that $g^{\bullet} \circ f^{\bullet}=0$ in $\mathbf{K}(\mathscr{A})$ there is a (not necessarily unique) factorization

Exercise IV.6. Let \mathscr{A} be an abelian category. Let $A^{\bullet} \in \mathbf{C}(\mathscr{A})$. Show that $A^{\bullet} \cong 0$ in $\mathbf{K}(\mathscr{A})$ if and only if A^{\bullet} is isomorphic to a complex of the form

$$
\cdots \xrightarrow{\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)} B^{-1} \oplus B^{0} \xrightarrow{\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)} B^{0} \oplus B^{1} \xrightarrow{\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)} B^{1} \oplus B^{2} \xrightarrow{\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)} \ldots .
$$

Hint: For the "only if" direction, consider the short exact sequences

$$
0 \longrightarrow \mathrm{~B}^{n}\left(A^{\bullet}\right) \longrightarrow A^{n} \longrightarrow \mathrm{~B}^{n+1}\left(A^{\bullet}\right) \longrightarrow 0 .
$$

Chapter V

Derived functors

25 Definition and first properties

Let \mathscr{A} and \mathscr{B} be abelian categories, and $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ an (additive) functor. Then F also induces a functor $\mathrm{F}_{\mathbf{K}}: \mathbf{K}(\mathscr{A}) \longrightarrow \mathbf{K}(\mathscr{B})$. We use this construction to define derived functors.

Definition 25.1. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be a right exact functor. Assume that \mathscr{A} has enough projectives. Then we define the n-th left derived functor of F by

$$
\mathbb{L}_{n} \mathrm{~F}=\mathrm{H}^{-n} \circ \mathrm{~F}_{\mathbf{K}} \circ \mathrm{p} .
$$

That is, we take a projective resolution of the object, apply our functor to this projective resolution, and then consider the homology groups of the result.

Dually, if $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ is left exact and \mathscr{A} has enough injectives, we can construct right derived functors as

$$
\mathbb{R}^{n} \mathrm{~F}=\mathrm{H}^{n} \circ \mathrm{~F}_{\mathbf{K}} \circ \mathrm{i} .
$$

Lemma 25.2. Let \mathscr{A} have enough projectives, and let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be right exact. Then $\mathbb{L}_{0} \mathrm{~F}$ is naturally isomorphic to F .

Dually, if \mathscr{A} has enough injectives and the functor is left exact, then $\mathbb{R}^{0} \mathrm{~F} \xlongequal[\text { nat }]{\cong}$ F.

Proof. We follow the definition of $\mathbb{L}_{0} \mathrm{~F}$:

Let $A \in \mathcal{O b} \mathscr{A}$, and let $\cdots \longrightarrow P^{-1} \xrightarrow{d} P^{0}$ be a projective resolution of A. Then $A=\operatorname{Cok} d$. We apply F , and see that

$$
\mathbb{L}_{0} \mathrm{~F} A=\mathrm{H}^{0}\left(\cdots \longrightarrow \mathrm{~F} P^{-1} \xrightarrow{\mathrm{~F} d} \mathrm{~F} P_{0}\right)=\operatorname{Cok} \mathrm{F} d
$$

But since F is right exact we have

$$
\operatorname{Cok} \mathrm{F} d \cong \mathrm{~F}(\operatorname{Cok} d)=\mathrm{F} A
$$

Lemma 25.3. Let \mathscr{A} have enough projectives, and let $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{B}$ be exact. Then $\mathbb{L}_{n} \mathrm{~F}=0$ for all non-zero n.

Dually, if \mathscr{A} has enough injectives and the functor is exact, then $\mathbb{R}^{n} \mathrm{~F}=0$ except for $n=0$.

Proof. Since the functor is exact it commutes with taking homology. That is

$$
\mathbb{L}_{n} \mathrm{~F}=\mathrm{H}^{-n} \circ \mathrm{~F}_{\mathrm{K}} \circ \mathrm{p}=\mathrm{F} \circ \mathrm{H}^{-n} \circ \mathrm{p}= \begin{cases}\mathrm{F} \circ \mathrm{id}_{\mathscr{A}} & \text { if } n=0 \\ \mathrm{~F} \circ 0 & \text { if } n \neq 0\end{cases}
$$

Example 25.4. For the functors Hom and \otimes the derived functors have special names:

$$
\begin{aligned}
\operatorname{Ext}_{\mathscr{A}}^{n}(A,-) & =\mathbb{R}^{n} \operatorname{Hom}_{\mathscr{A}}(A,-) \\
\operatorname{Ext}_{\mathscr{A}}^{n}(-, A) & =\mathbb{R}^{n} \operatorname{Hom}_{\mathscr{A}}(-, A) \\
\operatorname{Tor}_{n}^{R}(M,-) & =\mathbb{L}_{n}\left(M \otimes_{R}-\right) \\
\operatorname{Tor}_{n}^{R}(-, N) & =\mathbb{L}_{n}\left(-\otimes_{R} N\right)
\end{aligned}
$$

In the second line, note that we consider $\operatorname{Hom}_{\mathscr{A}}(-, A)$ as a left exact functor $\mathscr{A}^{\mathrm{op}} \longrightarrow \mathbf{A b}$. In particular we calculate the derived functors by taking an injective resolution in $\mathscr{A}^{\text {op }}$, that is a projective resolution in \mathscr{A}.

We will see later that $\operatorname{Ext}_{\mathscr{A}}^{n}(A,-)(B)=\operatorname{Ext}_{\mathscr{A}}^{n}(-, B)(A)$, and will simply denote this by $\operatorname{Ext}_{\mathscr{A}}^{n}(A, B)$. (And similar for Tor.)

Example 25.5. We calculate $\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z} /(n),-)(\mathbb{Z} /(m))$:
We start with a projective resolution of $\mathbb{Z} /(m)$. The simplest one is given by $0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot m} \mathbb{Z} \longrightarrow 0$.

Now we apply the (non-derived) functor $\mathbb{Z} /(n) \otimes_{\mathbb{Z}}-$, and obtain the complex $0 \longrightarrow \mathbb{Z} /(n) \xrightarrow{\cdot m} \mathbb{Z} /(n) \longrightarrow 0$. The kernel of the non-zero map here is

$$
(n / \operatorname{gcd}(m, n)) /(n) \cong \mathbb{Z} /(\operatorname{gcd}(m, n)),
$$

and the cokernel is also $\mathbb{Z} /(\operatorname{gcd}(m, n))$. Thus

$$
\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z} /(n),-)(\mathbb{Z} /(m))= \begin{cases}\mathbb{Z} /(\operatorname{gcd}(m, n)) & \text { if } i \in\{0,1\} \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 25.6. Let \mathscr{A} have enough projectives, and let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be right exact.

For any short exact sequence $A \longrightarrow B \rightarrow C$ in \mathscr{A} there is a long exact sequence

$$
\cdots \longrightarrow \mathbb{L}_{2} \mathrm{~F} C \longrightarrow \mathbb{L}_{1} \mathrm{~F} A \longrightarrow \mathbb{L}_{1} \mathrm{~F} B \longrightarrow \mathbb{L}_{1} \mathrm{~F} C \longrightarrow \mathrm{~F} A \longrightarrow \mathrm{~F} B \longrightarrow \mathrm{~F} C \longrightarrow 0
$$

in \mathscr{B}.

Proof. By the horseshoe lemma (Proposition 23.8) we may find projective resolutions of A, B, and C fitting into a diagram as follows:

Now, applying F to these projective resolutions, we obtain the diagram

Note that while F is not exact, it does preserve direct sums and split short exact sequences.

Now the long exact sequence of the theorem is just the long exact sequence of homology (Theorem 20.6).

26 Syzygies and dimension shift

Observation 26.1. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be right exact, and assume that \mathscr{A} has enough projectives.

Then $\mathbb{L}_{i} \mathrm{~F} P=0$ for all non-zero i and any projective P. (To see this, note that $0 \longrightarrow P \longrightarrow 0$ is a projective resolution.)

The aim of this section is to combine this observation with the long exact sequence of derived functors.
Definition 26.2. Let \mathscr{A} be abelian with enough projectives. For an object A, we construct a syzygy of A as the kernel of an epimorphism from a projective object to A, and denote it by ΩA. That is, by definition we have a short exact sequence

$$
0 \longrightarrow \Omega A \longrightarrow P \longrightarrow A \longrightarrow 0
$$

with P projective.
Remark 26.3. Note that ΩA is not uniquely determined by A : different epimorphisms from projectives may give different syzygies.

In particular Ω is not a functor. (It may be applied to morphisms, but this again involves making choices.)

It can be seen that Ω defines an auto-functor of the quotient category

$$
\frac{\mathscr{A}}{\substack{\text { morphisms factoring through } \\ \text { projective objects }}}
$$

Definition 26.4. Dually, if \mathscr{A} has enough injectives, we define the cosyzygy of an object A to be the cokernel of a monomorphism of A into an injective object. The cosyzygy will be denoted by $\mho A$.
Remark 26.5. It is more usual to denote cosyzygies by Ω^{-1}. However is should be noted that syzygy and cosyzygy are in general not mutually inverse to each other, which this notation seems to suggest.

Theorem 26.6 (Dimension shift). Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be right exact, and assume that \mathscr{A} has enough projectives. Let $A \in \mathcal{O b} \mathscr{A}$. Then

$$
\mathbb{L}_{n} \mathrm{~F} A=\mathbb{L}_{n-1} \mathrm{~F}(\Omega A) \quad \forall n \geqslant 2 .
$$

Moreover, given a short exact sequence $\Omega A \hookrightarrow P \rightarrow A$ with P projective, we have

$$
\mathbb{L}_{1} \mathrm{~F} A=\operatorname{Ker}[\mathrm{F}(\Omega A) \longrightarrow \mathrm{F} P] .
$$

Proof. We consider the short exact sequence $\Omega A \longrightarrow P \rightarrow A$, and the long exact sequence of derived functors associated to it. For $n \geqslant 2$ we obtain

$$
0=\mathbb{L}_{n} \mathrm{~F} P \longrightarrow \mathbb{L}_{n} \mathrm{~F} A \longrightarrow \mathbb{L}_{n-1} \mathrm{~F}(\Omega A) \longrightarrow \mathbb{L}_{n-1} \mathrm{~F} P=0
$$

and thus the first claim.
For $n=1$ we have the exact sequence

$$
0=\mathbb{L}_{1} \mathrm{~F} P \longrightarrow \mathbb{L}_{1} \mathrm{~F} A \longrightarrow \mathrm{~F}(\Omega A) \longrightarrow \mathrm{F} P,
$$

and thus the second claim.
We also have the dual for left exact functors:
Theorem 26.7. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be left exact, and assume that \mathscr{A} has enough injectives. Let $A \in \mathcal{O b} \mathscr{A}$. Then

$$
\mathbb{R}^{n} \mathrm{~F} A=\mathbb{R}^{n-1} \mathrm{~F}(\mho A) \quad \forall n \geqslant 2
$$

Moreover, given a short exact sequence $A \rightsquigarrow I \rightarrow \mho A$ with I injective, we have

$$
\mathbb{R}^{1} \mathrm{~F} A=\operatorname{Cok}[\mathrm{F} I \longrightarrow \mathrm{~F}(\mho A)] .
$$

27 Ext 1 and extensions

Let \mathscr{A} be an abelian category, and A and B objects. We denote by \mathscr{E} the collection of all short exact sequences

$$
\mathbb{E}: 0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0
$$

for some E.
We consider two short exact sequences \mathbb{E}_{1} and \mathbb{E}_{2} equivalent if there is a commutative diagram

Note that by the five lemma the map φ necessarily is an isomorphism. Using this fact one may see that the above definition indeed gives rise to an equivalence relation.

Definition 27.1. The Yoneda-Extension group is the collection of equivalence classes

$$
\operatorname{YExt}_{\mathscr{A}}^{1}(A, B)=\mathscr{E} / \sim
$$

To explain why this is a group, we first discuss that it is functorial in both A and B :

Construction 27.2. Let $f: B_{1} \longrightarrow B_{2}$. Then taking pushouts gives a map $\operatorname{YExt}_{\mathscr{A}}^{1}\left(A, B_{1}\right) \longrightarrow \operatorname{YExt}_{\mathscr{A}}^{1}\left(A, B_{2}\right)$, denoted by $f \cdot-$:

Here we use that pushouts of monos are mono, and have the same cokernel.

Dually, if $g: A_{1} \longrightarrow A_{2}$, taking pullbacks gives a map

$$
-\cdot g: \operatorname{YExt}_{\mathscr{A}}^{1}\left(A_{2}, B\right) \longrightarrow \operatorname{YExt}_{\mathscr{A}}^{1}\left(A_{1}, B\right) .
$$

It is possible to see that these constructions commute: $(f \cdot \mathbb{E}) \cdot g=f \cdot(\mathbb{E} \cdot g)$. Hence we may omit brackets in this setup.

Definition 27.3 (Baer sum). Let \mathbb{E}_{1} and \mathbb{E}_{2} be in $\operatorname{YExt}_{\mathscr{A}}^{1}(A, B)$. We first define their coproduct to be
$\mathbb{E}_{1} \oplus \mathbb{E}_{2}: 0 \longrightarrow B \oplus B \longrightarrow E_{1} \oplus E_{2} \longrightarrow A \oplus A \longrightarrow 0 \in \operatorname{YExt}_{\mathscr{A}}^{1}(A \oplus A, B \oplus B)$, where all maps are diagonal.

Now the Baer sum of \mathbb{E}_{1} and \mathbb{E}_{2} is

$$
\mathbb{E}_{1}+\mathbb{E}_{2}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \cdot\left(\mathbb{E}_{1} \oplus \mathbb{E}_{2}\right) \cdot\binom{1}{1} \in \operatorname{YExt}_{\mathscr{A}}^{1}(A, B) .
$$

Theorem 27.4. The Yoneda-Ext of two objects, together with Baer sum, forms an abelian group (provided it is a set). The zero-element of this abelian group is given by the split short exact sequence.

This group structure turns $\mathrm{YExt}_{\mathscr{A}}^{1}$ into an additive functor $\mathscr{A}^{\mathrm{op}} \times \mathscr{A} \longrightarrow \mathbf{A b}$. Proof. It is clear from the construction that the Baer sum is commutative.

For $\mathbb{E}_{1}, \mathbb{E}_{2}, \mathbb{E}_{3} \in \operatorname{YExt}_{\mathscr{A}}^{1}(A, B)$ one may see that

$$
\mathbb{E}_{1}+\mathbb{E}_{2}+\mathbb{E}_{3}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \cdot\left(\mathbb{E}_{1} \oplus \mathbb{E}_{2} \oplus \mathbb{E}_{3}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)
$$

independent of brackets, that is Baer sum is associative.
Next we observe that for any short exact sequence \mathbb{E} we have that both $0 \cdot \mathbb{E}$ and $\mathbb{E} \cdot 0$ are split short exact. Indeed we have the following pushout diagram

(and a similar one for the case of pullbacks along zero-morphisms).

Now we check that for two maps f and g from B_{1} to B_{2}, and an extension $\mathbb{E} \in \operatorname{YExt}_{\mathscr{A}}^{1}\left(A, B_{1}\right)$, we have $(f+g) \cdot \mathbb{E}=f \cdot \mathbb{E}+g \cdot \mathbb{E}$. As a first step, consider the commutative diagram

where the dashed arrow exists by the pushout property of the upper left square. We see that

$$
\binom{1}{1} \cdot \mathbb{E}=(\mathbb{E} \oplus \mathbb{E}) \cdot\binom{1}{1} .
$$

Now we calculate

$$
\begin{aligned}
f \cdot \mathbb{E}+g \cdot \mathbb{E} & =\binom{1}{1} \cdot(f \cdot \mathbb{E} \oplus g \cdot \mathbb{E}) \cdot\binom{1}{1} \\
& =(f g) \cdot(\mathbb{E} \oplus \mathbb{E}) \cdot\binom{1}{1} \\
& =(f g)\binom{1}{1} \cdot \mathbb{E} \\
& =(f+g) \cdot \mathbb{E}
\end{aligned}
$$

Finally we use the above observations to verify that the split exact sequences are a neutral element, and that there are inverses:

Let $\mathbb{E} \in \mathrm{YExt}_{\mathscr{A}}^{1}(A, B)$, and let $\mathbb{E}_{\text {split }}$ denote the split exact sequence between the same two objects. Then

$$
\mathbb{E}+\mathbb{E}_{\text {split }}=1 \cdot \mathbb{E}+0 \cdot \mathbb{E}=(1+0) \cdot \mathbb{E}=\mathbb{E}
$$

Similarly we check that $(-1) \cdot \mathbb{E}$ is an inverse of \mathbb{E} :

$$
\mathbb{E}+(-1) \cdot \mathbb{E}=(1-1) \cdot \mathbb{E}=0 \cdot \mathbb{E}
$$

is the split exact sequence.
Theorem 27.5. Assume \mathscr{A} has enough projectives. Then

$$
\operatorname{YExt}_{\mathscr{A}}^{1}(A, B)=\operatorname{Ext}_{\mathscr{A}}^{1}(-, B)(A) .
$$

Dually, if \mathscr{A} has enough injectives then

$$
\operatorname{YExt}_{\mathscr{A}}^{1}(A, B)=\operatorname{Ext}_{\mathscr{A}}^{1}(A,-)(B) .
$$

In particular if \mathscr{A} has both enough projectives and enough injectives then

$$
\operatorname{Ext}_{\mathscr{A}}^{1}(-, B)(A)=\operatorname{Ext}_{\mathscr{A}}^{1}(A,-)(B) .
$$

Proof. We prove the first claim. The second one is dual, and the third one then follows immediately.

Consider a short exact sequence

$$
\mathbb{E}_{\mathrm{p}}: 0 \longrightarrow \Omega A \xrightarrow{\iota} P \xrightarrow{\pi} A \longrightarrow 0
$$

with P projective. We may consider this an element of $\operatorname{YExt}_{\mathscr{A}}^{1}(A, \Omega A)$.
Now multiplication with \mathbb{E}_{p} gives a map

$$
-\cdot \mathbb{E}_{\mathrm{p}}: \operatorname{Hom}_{\mathscr{A}}(\Omega A, B) \longrightarrow \operatorname{YExt}_{\mathscr{A}}^{1}(A, B) .
$$

We claim that this map is surjective, and that its kernel consist precisely of the morphisms factoring through ι.

To see surjectivity, consider the following diagram for any $\mathbb{E} \in \operatorname{YExt}_{\mathscr{A}}^{1}(A, B)$:

Here the right dashed arrow exists by the lifting property of projectives, and the left dashed arrow is a kernel morphism. It follows from the characterization of pushouts (see Theorem 14.2) that the left square is a pushout, that is that $\mathbb{E}=f \cdot \mathbb{E}_{\mathrm{p}}$ for the morphism f found in the diagram.

To determine the kernel of the map $-\cdot \mathbb{E}_{\mathrm{p}}$, note that a morphism f is in the kernel if and only if we can find a commutative diagram

By commutativity of the right square we need $s=\pi$, and then the left square commutes if and only if $r \circ \iota=f$. It follows that the kernel consists precisely of the maps factoring through ι.

But, by dimension-shift (see Theorem 26.7) we have

$$
\operatorname{Ext}_{\mathscr{A}}^{1}(-, B)(A)=\operatorname{Cok}\left[\operatorname{Hom}_{\mathscr{A}}(P, B) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(\Omega A, B)\right]
$$

that is $\operatorname{Ext}_{\mathscr{A}}^{1}(-, B)(A)$ is also the quotient of $\operatorname{Hom}_{\mathscr{A}}(\Omega A, B)$ modulo morphisms factoring through ι.

28 Total complexes - balancing Tor and Ext

Definition 28.1. A double complex is an infinite commutative square pattern

such that the composition of any two vertical or any two horizontal morphisms vanishes.

In other words, a double complex is just an object in the category $\mathbf{C}(\mathbf{C}(\mathscr{A}))$.
Definition 28.2. Let $X^{\bullet \bullet}$ be a double complex, and assume that for any s, the infinite coproduct $\coprod_{m \in \mathbb{Z}} X^{m, s-m}$ exists. (For instance this is true if on every diagonal there are only finitely many non-zero objects.)

Then the total complex of $X^{\bullet \bullet}$ is given by

$$
\operatorname{Tot}\left(X^{\bullet \bullet \bullet}\right)^{s}=\coprod_{m \in \mathbb{Z}} X^{m, s-m}
$$

with the differential given on components by

$$
X^{m, s-m} \longrightarrow X^{m^{\prime}, s+1-m^{\prime}}: \begin{cases}d_{\mathrm{v}}^{m, s-m} & \text { if } m^{\prime}=m \\ (-1)^{s-m} d_{\mathrm{h}}^{m, s-m} & \text { if } m^{\prime}=m+1 \\ 0 & \text { otherwise }\end{cases}
$$

Remark 28.3. Note that cones are a special case of total complexes, where the only non-zero objects lie in rows -1 and 0 .

Proposition 28.4. Let $X^{\bullet \bullet}$ be a double complex concentrated in finitely many rows. (That is there are $a \leqslant b$ such that $X^{m, n}=0$ whenever $n<a$ or $n>b$.) Assume that all rows of $X^{\bullet \bullet}$ are exact. Then the total complex $\operatorname{Tot}\left(X^{\bullet \bullet \bullet}\right)$ is exact.

Proof. Let

$$
Y^{m, n}= \begin{cases}X^{m, n} & \text { if } n>a \\ 0 & \text { if } n \leqslant a\end{cases}
$$

that is $Y^{\bullet \bullet \bullet}$ is obtained from $X^{\bullet \bullet \bullet}$ by removing the top non-zero row.
Then one may observe that there is a natural map

$$
f^{\bullet}: X^{\bullet, a}[-a-1] \longrightarrow \operatorname{Tot}\left(Y^{\bullet \bullet \bullet}\right)
$$

and

$$
\operatorname{Tot}\left(X^{\bullet \bullet \bullet}\right)=\operatorname{Cone}\left(f^{\bullet}\right)
$$

Now we may assume inductively that $\operatorname{Tot}\left(Y^{\bullet \bullet \bullet}\right)$ is exact, and it then follows from the long exact sequence of homology that also all homologies of $\operatorname{Tot}\left(X^{\bullet \bullet \bullet}\right)$ vanish.

Corollary 28.5. Let $X^{\bullet \bullet}$ be a double complex such that all diagonals are finite. (That is for any s there are only finitely many m such that $X^{m, s-m} \neq 0$.) Assume all rows of $X^{\bullet \bullet \bullet}$ are exact. Then the total complex $\operatorname{Tot}\left(X^{\bullet \bullet \bullet}\right)$ is exact.

Proof. For any given position, we may disregard the rows of $X^{\bullet \bullet}$ such that $X^{s-n, n}=0$. Hence exactness in position s follows from Proposition 28.4 above. Since this applies to any given position the entire complex is exact.

Theorem 28.6 (Balancing Ext). Let \mathscr{A} be an abelian category with enough projectives and enough injectives. Then for any $A, B \in \mathcal{O b} \mathscr{A}$

$$
\operatorname{Ext}_{\mathscr{A}}^{n}(A,-)(B)=\operatorname{Ext}_{\mathscr{A}}^{n}(-, B)(A) .
$$

Proof. We choose a projective resolution P^{\bullet} of A, and an injective resolution I^{\bullet} of B.

Recall that the two Ext-groups of the theorem are by definition the homologies of $\operatorname{Hom}_{\mathscr{A}}\left(A, I^{\bullet}\right)$ and $\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, B\right)$, respectively. We will connect these two complexes via the third complex $\operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, I^{\bullet}\right)\right)$, showing that there are two quasi-isomorphisms

$$
\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, B\right) \longrightarrow \operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, I^{\bullet}\right)\right) \longleftarrow \operatorname{Hom}_{\mathscr{A}}\left(A, I^{\bullet}\right)
$$

It then follows immediately that all three complexes have the same homologies.

We denote the exact complex

$$
\ldots \longrightarrow P^{-1} \longrightarrow P^{0} \longrightarrow A \longrightarrow 0 \longrightarrow \cdots
$$

by \bar{P}^{\bullet}, and similarly the exact complex

$$
\cdots 0 \longrightarrow B \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \cdots
$$

by \bar{I}^{\bullet}.
We consider the double complex $\operatorname{Hom}_{\mathscr{A}}\left(\bar{P}^{\bullet}, \bar{I}^{\bullet}\right)$, and its versions with P^{\bullet} instead of \bar{P}^{\bullet} and I^{\bullet} instead of \bar{I}^{\bullet}. (In the following picture we write (X, Y)
for $\operatorname{Hom}_{\mathscr{A}}(X, Y)$ to save space.)

We note that

exact columns
\Longrightarrow exact total complex
and
$\operatorname{Hom}_{\mathscr{A}}\left(\bar{P}^{\bullet}, I^{\bullet}\right)=$

exact rows
\Longrightarrow exact total complex

On the other hand there is the morphism $\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, B\right) \longrightarrow \operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, I^{\bullet}\right)\right)$ (essentially given by the morphisms crossing the vertical dashed line above), whose cone is $\operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, \bar{I}^{\bullet}\right)\right)$. In particular the cone is exact, so the morphism is a quasi-isomorphism.

Similarly the natural morphism $\operatorname{Hom}_{\mathscr{A}}\left(A, I^{\bullet}\right) \longrightarrow \operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, I^{\bullet}\right)\right)$ is a quasi-isomorphism, since its cone $\operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(\bar{P}^{\bullet}, I^{\bullet}\right)\right.$ is exact.

Now the two quasi-isomorphisms

$$
\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, B\right) \longrightarrow \operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, I^{\bullet}\right)\right) \longleftarrow \operatorname{Hom}_{\mathscr{A}}\left(A, I^{\bullet}\right)
$$

give rise to isomorphisms

$$
\mathrm{H}^{-n}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, B\right)\right) \cong \mathrm{H}^{-n}\left(\operatorname{Tot}\left(\operatorname{Hom}_{\mathscr{A}}\left(P^{\bullet}, I^{\bullet}\right)\right)\right) \cong \mathrm{H}^{-n}\left(\operatorname{Hom}_{\mathscr{A}}\left(A, I^{\bullet}\right)\right) .
$$

Now note that the left hand term is by definition $\operatorname{Ext}_{\mathscr{A}}^{n}(-, B)(A)$, while the right hand term is $\operatorname{Ext}_{\mathscr{A}}^{n}(A,-)(B)$.

Theorem 28.7 (Balancing Tor). Let R be ring, M a right and N a left R module. Then

$$
\operatorname{Tor}_{n}^{R}(M,-)(N)=\operatorname{Tor}_{n}^{R}(-, N)(M)
$$

Proof. The proof is very similar to the proof of Theorem 28.6 above. Here we start with two projective resolutions P_{M}^{\bullet} and P_{N}^{\bullet} of M and N respectively. We then proceed as before to show that we have quasi-isomorphisms

$$
M \otimes_{R} P_{N}^{\bullet} \longrightarrow \operatorname{Tot}\left(P_{M}^{\bullet} \otimes_{R} P_{N}^{\bullet}\right) \longleftarrow P_{M}^{\bullet} \otimes_{R} N
$$

It then follows that the homologies of all three complexes coincide.

29 Small global dimension

Throughout this section, let \mathscr{A} be an abelian category that has enough projectives or enough injectives.

Definition 29.1. The global dimension of \mathscr{A} is

$$
\operatorname{gl.dim} \mathscr{A}=\sup \left\{n \in \mathbb{N}_{0} \mid \exists A, B \in \mathcal{O} \mathfrak{A}: \operatorname{Ext}_{\mathscr{A}}^{n}(A, B) \neq 0\right\} \in \mathbb{N}_{0} \cup\{\infty\}
$$

An abelian category is called

- semisimple if gl.dim $\mathscr{A}=0$;
- hereditary if gl.dim $\mathscr{A} \leqslant 1$.

Proposition 29.2. The following are equivalent:
(1) \mathscr{A} is semisimple;
(2) all objects in \mathscr{A} are projective;
(3) all objects in \mathscr{A} are injective;
(4) all epimorphisms in \mathscr{A} are split epimorphisms;
(5) all monomorphisms in \mathscr{A} are split monomorphisms.

Proof. We show $(1) \Longrightarrow(5) \Longrightarrow(3) \Longrightarrow(1)$. The proof of $(1) \Longrightarrow(4) \Longrightarrow$ $(2) \Longrightarrow(1)$ is similar.

Assume first that \mathscr{A} is semisimple. Then $\mathrm{YExt}_{\mathscr{A}}^{1}=0$, hence all short exact sequences split. In particular any monomorphism splits.

If any monomorphism splits then the lifting property for injectives is automatic, so all objects are injective.

Finally, if all objects are injective, then $\operatorname{Ext}_{\mathscr{A}}^{n}(A,-)(B)=0$ for all $n>0$. (Note that B is its own injective resolution.)

Example 29.3. Let \mathbb{F} be a field. Then both $\operatorname{Mod} \mathbb{F}$ and $\bmod \mathbb{F}$ are semisimple abelian categories.

Definition 29.4. Assume \mathscr{A} has enough projectives. Then the projective dimension $\operatorname{pd} A$ of an object A is the smallest n, such that A has a projective resolution of the form
$\cdots \longrightarrow 0 \longrightarrow P^{-n} \longrightarrow \cdots \longrightarrow P^{0} \longrightarrow 0 \longrightarrow \cdots$.
(We say $\operatorname{pd} A=\infty$ if all projective resolutions of A are infinite.)
Dually, if \mathscr{A} has enough injectives, then the injective dimension id A of an object A is the smallest n such that A has an injective resolution
$\cdots \longrightarrow 0 \longrightarrow I^{0} \longrightarrow \cdots \longrightarrow I^{n} \longrightarrow 0 \longrightarrow \cdots$.
Remark 29.5. Clearly an object A is projective if and only if $\operatorname{pd} A=0$, and injective if and only if id $A=0$.

Theorem 29.6. Assume \mathscr{A} has enough projectives, and let $A \in \mathcal{O b} \mathscr{A}$. Then

$$
\operatorname{pd} A=\sup \left\{n \in \mathbb{N}_{0} \mid \exists B \in \mathcal{O} \mathfrak{A}: \operatorname{Ext}_{\mathscr{A}}^{n}(A, B) \neq 0\right\}
$$

Proof. If $\operatorname{pd} A=n$ then $\operatorname{Ext}_{\mathscr{A}}^{i}(A, B)=0$ for any $i>n$, and thus we have the inequality \geqslant.

Assume now that $\operatorname{Ext}_{\mathscr{A}}^{i}(A,-)=0$ for some i. By dimension shift it follows that $\operatorname{Ext}_{\mathscr{A}}^{1}\left(\Omega^{i-1} A,-\right)=0$. Interpreting this as Yoneda-Ext, we see that any epimorphism to $\Omega^{i-1} A$ splits, that is that $\Omega^{i-1} A$ is projective.

Now we have a projective resolution of length $i-1$, given by

$$
0 \longrightarrow \Omega^{i-1} A \longrightarrow P^{2-i} \longrightarrow \cdots \longrightarrow P^{0} \longrightarrow 0
$$

showing that $\mathrm{pd} A \leqslant i-1$.
We also have the dual of the above theorem:
Theorem 29.7. Assume \mathscr{A} has enough injectives, and let $A \in \mathcal{O} \mathscr{A}$. Then

$$
\operatorname{id} A=\sup \left\{n \in \mathbb{N}_{0} \mid \exists B \in \mathcal{O b} \mathscr{A}: \operatorname{Ext}_{\mathscr{A}}^{n}(B, A) \neq 0\right\} .
$$

Corollary 29.8. Assume \mathscr{A} has enough projectives. Then

$$
\operatorname{gl.\operatorname {dim}\mathscr {A}}=\sup \{\operatorname{pd} A \mid A \in \mathcal{O} \mathfrak{A}\} .
$$

Dually, if \mathscr{A} has enough injectives, then

$$
\operatorname{gl.\operatorname {dim}\mathscr {A}}=\sup \{\operatorname{id} A \mid A \in \mathcal{O b} \mathscr{A}\} .
$$

Proposition 29.9. Assume \mathscr{A} has enough projectives. Then \mathscr{A} is hereditary if and only if all subobjects of projective objects are projective.

Remark 29.10. This explains the name "hereditary": subobjects inherit the property of being projective.

Proof. Assume first that any subobject of a projective is projective. Then it follows that any object has a projective resolution with at most two non-zero terms. Thus \mathscr{A} is hereditary by Corollary 29.8 .

Assume conversely that \mathscr{A} is hereditary, and let $A \hookrightarrow P$ be a subobject of a projective. We denote by P / A the cokernel of this inclusion, and observe that

$$
\operatorname{Ext}_{\mathscr{A}}^{1}(A,-)=\operatorname{Ext}_{\mathscr{A}}^{2}(P / A,-)=0
$$

where the first equality is dimension shift, and the latter comes from the definition of hereditary. It follows that A is projective.

Theorem 29.11. Let R be right noetherian. Then the category $\bmod R$ of finitely generated right R-modules is hereditary if and only if all right ideals of R are projective.

Proof. "only if" is clear, since right ideals are submodules of the projective module R.
"if": It suffices to show that any submodule of R^{n} is projective (since all projective objects are direct summands of free modules). We show this by induction on n, the case $n=1$ holding by assumption.

Let M be a submodule of R^{n}, and consider the split short exact sequence

$$
0 \longrightarrow R \longrightarrow \underbrace{R \oplus R^{n-1}}_{\cong R^{n}} \longrightarrow R^{n-1} \longrightarrow 0
$$

We denote by I and K the image and kernel of the composition $M \longrightarrow R^{n-1}$. Thus we have the following commutative diagram

where the dashed map is the kernel morphism, and it is mono by commutativity of the left square.

Now inductively both K and I are projective, hence the upper short exact sequence splits, and $M \cong K \oplus I$ also is projective.

Remark 29.12. More generally, one can show that the category $\operatorname{Mod} R$ is hereditary if and only if all right ideals of R are projective.

Example 29.13. Let R be a principal ideal domain. (That is a commutative ring without zero-divisors, such that every ideal is generated by a single element.) Then $\operatorname{Mod} R$ is hereditary.

In particular $\operatorname{Mod} \mathbb{Z}$ is hereditary, and for any field \mathbb{F} the category of modules over the polynomial ring $\operatorname{Mod} \mathbb{F}[X]$ is hereditary.

Remark 29.14. One can show that for a field \mathbb{F}, one has

$$
\operatorname{gl.dim} \mathbb{F}\left[X_{1}, \ldots, X_{d}\right]=d
$$

30 Exercises

Exercise V.1. Calculate

- $\operatorname{Ext}_{\mathbb{Z}}^{n}(-, \mathbb{Z} /(b))(\mathbb{Z} /(a))$ for alle $a, b, n \in \mathbb{N}$;
- $\operatorname{Ext}_{\text {presh }}^{n \text { mod } \mathbb{F}} X\left(-, P_{0}\right)\left(I_{\omega}\right)$ for all $n \in \mathbb{N}$, where X is the poset from Exercise IV. 3 .

Exercise V.2. Let R as below, and S be the R-module which is F as \mathbb{F}-vector space, with all variables acting as 0 . Calculate all $\operatorname{Ext}_{R}^{n}(S, S)$ for $n \geqslant 0$.

- $R=\mathbb{F}[X]$;
- $R=\mathbb{F}[X] /\left(X^{3}\right)$;
- $R=\mathbb{F}[X, Y]$;
- $R=\mathbb{F}[X, Y] /(X Y)$.

Exercise V.3. Let $R=\mathbb{F}[X, Y] /(X Y)$ for some field \mathbb{F}, and $M=R /(X)$. Calculate $\operatorname{Ext}_{R}^{n}(M, M)$ for all $n \in \mathbb{N}$.
Exercise V. 4 (Balancing Ext). The aim of this exercise is to give a different (arguably simpler) proof for the fact that Ext is independent of with respect to which argument we derive the Hom-functor.

Let \mathscr{A} be an abelian category with enough projectives.

- For a short exact sequence $A \hookrightarrow B \rightarrow C$, and an object X, show that there is a long exact sequence

$$
\begin{aligned}
& \cdots \rightarrow \operatorname{Ext}_{\mathscr{A}}^{n}(-, A)(X) \rightarrow \operatorname{Ext}_{\mathscr{A}}^{n}(-, B)(X) \rightarrow \operatorname{Ext}_{\mathscr{A}}^{n}(-, C)(X) \\
& \rightarrow \operatorname{Ext}_{\mathscr{A}}^{n+1}(-, A)(X) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{n+1}(-, B)(X) \rightarrow \operatorname{Ext}_{\mathscr{A}}^{n+1}(-, C)(X) \rightarrow \cdots
\end{aligned}
$$

- Show that $\operatorname{Ext}_{\mathscr{A}}^{n}(-, I)(X)=0$ for all positive n, if I is injective.
- Show that there is dimension shift with respect to the "inner" argument, that is provided we have a short exact sequence

$$
0 \longrightarrow A \longrightarrow I \longrightarrow \mho A \longrightarrow 0
$$

with I injective, then

$$
\operatorname{Ext}_{\mathscr{A}}^{n}(-, A)(X) \cong \begin{cases}\operatorname{Ext}_{\mathscr{A}}^{n-1}(-, \mho A)(X) & \text { if } n \geqslant 2 \\ \operatorname{Cok}\left[\operatorname{Hom}_{\mathscr{A}}(X, I) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(X, \mho A)\right] & \text { if } n=1\end{cases}
$$

- Assume now that \mathscr{A} in addition has enough injectives. Show that

$$
\operatorname{Ext}_{\mathscr{A}}^{n}(-, A)(X) \cong \operatorname{Ext}_{\mathscr{A}}^{n}(X,-)(A)
$$

Exercise V.5. Let \mathscr{A} be an abelian category with enough injectives. We consider the category of morphisms in \mathscr{A},

$$
\operatorname{mor}(\mathscr{A})=\operatorname{presh}_{\mathscr{A}}\{1<2\} .
$$

- Convince yourself that Ker defines a left exact functor $\operatorname{mor}(\mathscr{A}) \longrightarrow \mathscr{A}$.
- Find out what the right derived functors \mathbb{R}^{n} Ker are.

Hint: First consider the case that the morphism in question is an epimorphism. Then generalize to arbitrary morphisms using a short exact sequence in $\operatorname{mor}(\mathscr{A})$ where the other two objects are epimorphisms.
Exercise V.6. Calculate explicitly (i.e. by classifying equivalence classes of short exact sequences) the following Yoneda-extension groups.

- $\operatorname{YExt}_{\mathbf{A b}}^{1}(\mathbb{Z} /(2), \mathbb{Z} /(3))$,
- $\operatorname{YExt}_{\mathbf{A b}}^{1}(\mathbb{Z} /(2), \mathbb{Z} /(2))$,
- YExt $_{\text {presh }_{\text {mod }} X}^{1}\left(I_{\omega}, P_{0}\right)$, where $X=\{0<\omega\}$.
(By genereal theory, these should coincide with the Ext calculated via projective resolutions in Exercise V.1.)
Exercise V. 7 (A short spectral sequence). Consider a double complex $X^{\bullet \bullet}$ with $X^{m, n}=0$ unless $m, n \in\{-1,0\}$ - that is essentially a commutative square

We consider the kernels and cokernels of the horizontal maps, and denote by $k: \operatorname{Ker} d_{\mathrm{h}}^{-1,-1} \longrightarrow \operatorname{Ker} d_{\mathrm{h}}^{-1,0}$ and $c: \operatorname{Cok} d_{\mathrm{h}}^{-1,-1} \longrightarrow \operatorname{Cok} d_{\mathrm{h}}^{-1,0}$ the kernel and cokernel morphism, respectively.

Show that

- $\mathrm{H}^{-2}\left(\operatorname{Tot}\left(X^{\bullet \bullet}\right)\right)=\operatorname{Ker} k$;
- There is a short exact sequence $\operatorname{Cok} k \longmapsto \mathrm{H}^{-1}\left(\operatorname{Tot}\left(X^{\bullet \bullet}\right)\right) \rightarrow \operatorname{Ker} c$;
- $\mathrm{H}^{0}\left(\operatorname{Tot}\left(X^{\bullet \bullet \bullet}\right)\right)=\operatorname{Cok} c$.

Exercise V.8. Let $R=\mathbb{F}[X, Y] /(X Y)$ for some field \mathbb{F}. Consider the double complex $X^{\bullet \bullet}$ given by

$$
X^{m, n}=R, \quad d_{\mathrm{h}}^{m, n}=d_{\mathrm{v}}^{m, n}=\left\{\begin{array}{ll}
X & \text { if } m+n \text { even } \\
Y & \text { if } m+n \text { odd }
\end{array} .\right.
$$

Show that all rows and all columns of $X^{\bullet \bullet \bullet}$ are exact, but its total complex is not exact.

Exercise V.9. Let R be a ring, and $X^{\bullet \bullet}$ a double complex of R-modules. assume that $X^{m, n}=0$ whenever $n>0$. (That is $X^{\bullet \bullet}$ is concentrated on the upper half plane.) Show that if all rows of $X^{\bullet \bullet \bullet}$ are exact then so is its total complex.

Exercise V.10. Let \mathscr{A} be an abelian category with enough projectives. Consider two short exact sequences $C \longmapsto F \rightarrow B$ and $B \longmapsto E \rightarrow A$.

Assume that $\operatorname{Ext}_{\mathscr{A}}^{2}(A, C)=0$.
Show that there is an object X completing the following diagram as indicated by the dashed arrows.

(That is, in the resulting diagram all squares commute and all rows and columns are short exact sequences.)

Exercise V.11. Let \mathscr{A} be an abelian category with enough projectives. Show that gl. $\operatorname{dim} \mathscr{A} \leqslant 2$ if and only if any morphism between projectives has a projective kernel.

Exercise V.12. Let \mathscr{A} be an abelian category with enough projectives. Show that

$$
\text { gl.dim } \operatorname{presh}_{\mathscr{A}}\{0<\omega\}=\operatorname{gl} \cdot \operatorname{dim} \mathscr{A}+1
$$

Chapter VI

Triangulated categories

31 Motivation - triangles in the homotopy category

Throughout this section, let \mathscr{A} be an abelian category. We have seen that for a morphism of complexes f^{\bullet}

$$
A^{\bullet} \xrightarrow{f^{\bullet}} B^{\bullet} \longrightarrow \operatorname{Cone}\left(f^{\bullet}\right) \longrightarrow A^{\bullet}[1]
$$

is a complex in $\mathbf{K}(\mathscr{A})$, giving rise to a long exact sequence of homology.
Now we take a different point of view, and say we consider the infinite complex

$$
\begin{aligned}
\cdots \longrightarrow & A^{\bullet}[n] \longrightarrow B^{\bullet}[n] \longrightarrow \operatorname{Cone}\left(f^{\bullet}\right)[n] \\
& \longrightarrow A^{\bullet}[n+1] \longrightarrow B^{\bullet}[n+1] \longrightarrow \operatorname{Cone}\left(f^{\bullet}\right)[n+1] \longrightarrow \cdots
\end{aligned}
$$

in the homotopy category. Since this complex is (up to shift) 3-periodic, we denote it by the triangle of objects and morphisms

(where the decorated arrow indicates that this represents a morphism to $A^{\bullet}[1]$).
The next result shows that, while the triangle is defined starting with f^{\bullet}, it has no preferred side.

Proposition 31.1. Let

$$
A^{\bullet} \xrightarrow{f^{\bullet}} B^{\bullet} \xrightarrow{\iota^{\bullet}} \operatorname{Cone}\left(f^{\bullet}\right) \xrightarrow{\pi^{\bullet}} A^{\bullet}[1]
$$

be a triangle as above, that is $\iota^{n}=\binom{1}{0}$ and $\pi^{n}=\left(\begin{array}{ll}0 & 1\end{array}\right)$ for all n.
Then there is an isomorphism $\varphi^{\bullet}: \operatorname{Cone}\left(\iota^{\bullet}\right) \longrightarrow A^{\bullet}[1]$ in $\mathbf{K}(\mathscr{A})$ such that the following diagram commutes.

Proof. We start by calculating that

$$
\operatorname{Cone}(\iota \cdot)^{n}=\operatorname{Cone}\left(f^{\bullet}\right)^{n} \oplus B^{n+1}=B^{n} \oplus A^{n+1} \oplus B^{n+1}
$$

and

$$
\left.d_{\text {Cone }(\iota}^{n} \bullet\right)=\left(\begin{array}{cc}
d_{\text {Cone }(f} \bullet & \iota^{n+1} \\
0 & -d_{B}^{n+1}
\end{array}\right)=\left(\begin{array}{ccc}
d_{B}^{n} & f^{n+1} & 1 \\
0 & -d_{A}^{n+1} & 0 \\
0 & 0 & -d_{B}^{n+1}
\end{array}\right) .
$$

We consider the morphisms $\varphi^{\bullet}: \operatorname{Cone}\left(\iota^{\bullet}\right) \longrightarrow A^{\bullet}[1]$ given by $\varphi^{n}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$ and $\psi^{\bullet}: A^{\bullet}[1] \longrightarrow \operatorname{Cone}\left(\iota^{\bullet}\right)$ given by $\psi^{n}=\left(\begin{array}{c}0 \\ 1 \\ -f^{n+1}\end{array}\right)$. A straightforward calculation shows that these are indeed morphisms of complexes.

Now we check the following four claims:
(1) The square

commutes in the category $\mathbf{C}(\mathscr{A})$.
(2) The square

commutes in the category $\mathbf{C}(\mathscr{A})$.
(3) $\varphi^{\bullet} \circ \psi^{\bullet}=1$ in the category $\mathbf{C}(\mathscr{A})$.
(4) $1-\psi^{\bullet} \circ \varphi^{\bullet}$ is null homotopic.
(1), (2), and (3) are straightforward matrix calculations, which are left to the reader. We only check (4) here. First we calculate

$$
1-\psi^{n} \circ \varphi^{n}=\left(\begin{array}{lll}
1 & & \\
& & \\
& & 1
\end{array}\right)-\left(\begin{array}{c}
0 \\
1 \\
-f^{n+1}
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & f^{n+1} & 1
\end{array}\right) .
$$

Now we set $h^{n}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right): \operatorname{Cone}\left(\iota^{\bullet}\right)^{n} \longrightarrow \operatorname{Cone}\left(\iota^{\bullet}\right)^{n-1}$ and see that

$$
\begin{aligned}
& d_{\operatorname{Cone}((\bullet)}^{n-1} \circ h^{n}+h^{n+1} \circ d_{\operatorname{Cone}(}^{n} \bullet \bullet \\
= & \left(\begin{array}{ccc}
d_{B}^{n} & f^{n+1} & 1 \\
0 & -d_{A}^{n+1} & 0 \\
0 & 0 & -d_{B}^{n+1}
\end{array}\right) \circ\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \circ\left(\begin{array}{ccc}
d_{B}^{n} & f^{n+1} & 1 \\
0 & -d_{A}^{n+1} & 0 \\
0 & 0 & -d_{B}^{n+1}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 \\
-d_{B}^{n} & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
d_{B}^{0} & 0 & 0 \\
d^{n+1} & 1
\end{array}\right) \\
= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & f^{n+1} & 1
\end{array}\right)
\end{aligned}
$$

Now note that (3) and (4) together imply that φ^{\bullet} and ψ^{\bullet} are mutually inverse isomorphisms in $\mathbf{K}(\mathscr{A})$, and thus (2) implies that also the rightmost square in the proposition commutes up to homotopy.

32 Definition

Definition 32.1. A triangulated category is an additive category \mathscr{T}, together with an autoequivalence [1]: $\mathscr{T} \longrightarrow \mathscr{T}$, and a class Δ of diagrams of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ such that
(T1) • For any morphism $f: X \longrightarrow Y$ in \mathscr{T}, there is a diagram

$$
X \xrightarrow{f} Y \longrightarrow Z \longrightarrow X[1]
$$

in Δ.

- For any object X, the diagram $X \xrightarrow{\text { id } X} X \longrightarrow 0 \longrightarrow X[1]$ is in Δ.
- Δ is closed under isomorphisms.
(T2) For any diagram $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ in Δ also the diagrams

$$
\begin{aligned}
& Y \xrightarrow{g} Z \xrightarrow{h} X[1] \xrightarrow{-f[1]} Y[1] \text { and } \\
& Z[-1] \xrightarrow{-h[-1]} X \xrightarrow{f} Y \xrightarrow{g} Z
\end{aligned}
$$

are in Δ.
(T3) Given the solid part of a diagram

where the square commutes, and the rows are in Δ, one can always find a morphism w as indicated above such that the entire diagram becomes commutative.
(T4) Octahedral axiom: Given the solid part of the following diagram, where
the two rows and the left column are in Δ,

there are morphisms as indicated by the dashed arrows, such that also the second column is in Δ, and the entire diagram commutes.

Remark 32.2. Sometimes morphisms $Z \longrightarrow X[1]$ are denoted by arrows

$$
Z \stackrel{ }{\longrightarrow}
$$

Then the elements of Δ can be depicted as actual triangles

In particular the octahedron in Axiom (T4) becomes visible in this notation:

Here all the oriented triangles lie in Δ, and all the non-oriented triangles and squares commute.

Remark 32.3. (T3), by use of (T2), can be seen as a kind of "2 out of 3"property: Given any two morphisms connecting two triangles, one may find a third.

Theorem 32.4 (Long exact Hom-sequence). Let \mathscr{T} be a triangulated category, $X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$ in Δ, and $T \in \mathcal{O b} \mathscr{T}$. Then the sequences
$\cdots \longrightarrow \operatorname{Hom}_{\mathscr{T}}(T, X[n]) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(T, Y[n]) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(T, Z[n]) \longrightarrow$

$$
\operatorname{Hom}_{\mathscr{T}}(T, X[n+1]) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(T, Y[n+1]) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(T, Z[n+1]) \longrightarrow \cdots
$$

and
$\cdots \longrightarrow \operatorname{Hom}_{\mathscr{T}}(Z[n], T) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(Y[n], T) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(X[n], T) \longrightarrow$

$$
\operatorname{Hom}_{\mathscr{T}}(Z[n-1], T) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(Y[n-1], T) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(X[n-1], T) \longrightarrow \cdots
$$ are exact.

Proof. We prove the first claim, the second one is dual. (Note that $\mathscr{T}^{\mathrm{op}}$ is also triangulated.)

By the rotation axiom (T2) it suffices to check that the sequence

$$
\operatorname{Hom}_{\mathscr{T}}(T, X) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(T, Y) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(T, Z)
$$

is exact. We do so by comparing the given triangle to the trivial triangle $T \longrightarrow T \longrightarrow 0 \longrightarrow T[1]$.

By (T3) the existence of the dashed arrow g is equivalent to the existence of the middle dashed arrow. That is, for $f \in \operatorname{Hom}_{\mathscr{T}}(T, Y)$ we have

$$
[Y \longrightarrow Z] \circ f=0 \Longleftrightarrow \exists g \in \operatorname{Hom}_{\mathscr{T}}(T, X):[X \longrightarrow Y] \circ g=f
$$

Remark 32.5. The above theorem says that any morphism in a triangle is a weak kernel of the next morphism, and a weak cokernel of the previous morphism.

Theorem 32.6 (2 out of 3 property for isomorphisms). Let \mathscr{T} be a triangulated category, and consider two triangles connected by morphisms as in the following diagram.

If two of the morphisms f, g, and h are isomorphisms, then so is the third one.
Proof. By (T2) we may rotate the triangles and assume f and g are isomorphisms. Now we apply the functor $\operatorname{Hom}_{\mathscr{T}}\left(-, Z_{1}\right)$ to the entire diagram, obtain-
ing

where $\left(-, Z_{1}\right)$ is short for $\operatorname{Hom}_{\mathscr{T}}\left(-, Z_{1}\right)$.
Since f and g are isomorphisms it follows that also the left two and right two vertical maps in this diagram are isomorphisms. Now, by the five lemma, the morphism

$$
-\circ h: \operatorname{Hom}_{\mathscr{T}}\left(Z_{2}, Z_{1}\right) \longrightarrow \operatorname{Hom}_{\mathscr{T}}\left(Z_{1}, Z_{1}\right)
$$

is an isomorphism. In particular there is $\tilde{h} \in \operatorname{Hom}_{\mathscr{T}}\left(Z_{2}, Z_{1}\right)$ such that $\tilde{h} \circ h=$ $\mathrm{id}_{Z_{1}}$, that is h is split mono.

Similarly, using the functor $\operatorname{Hom}_{\mathscr{T}}\left(Z_{2},-\right)$, one sees that h is split epi. Thus h is an isomorphism.

33 Homotopy categories are triangulated

Theorem 33.1. Assume \mathscr{A} is an additive category. Then the homotopy category $\mathbf{K}(\mathscr{A})$ is triangulated, with Δ being the class of all diagrams isomorphic to standard triangles $A^{\bullet} \underset{f^{\bullet}}{\longrightarrow} B^{\bullet} \longrightarrow \operatorname{Cone}\left(f^{\bullet}\right) \longrightarrow A^{\bullet}[1]$.

Proof. We have seen (the first half of) (T2) in Proposition 31.1.
The first and last point of (T1) hold by construction, for the second one note that $0 \rightarrow X \bullet \xrightarrow{\text { id }} X^{\bullet} \longrightarrow 0$ is a triangle, so, since we already checked (T2), so is $X^{\bullet} \xrightarrow{\text { id } X} X^{\bullet} \longrightarrow 0 \longrightarrow X^{\bullet}[1]$.

For (T3) we may, up to isomorphism, assume the following setup:

where the left square commutes up to homotopy. Explicitly that means that there are maps $h^{i}: X^{i} \longrightarrow\left(Y^{\prime}\right)^{i-1}$ such that

$$
v^{i} \circ f^{i}-\left(f^{\prime}\right)^{i} \circ u^{i}=d_{Y^{\prime}}^{i-1} \circ h^{i}+h^{i+1} \circ d_{X}^{i} .
$$

One easily sees that the map given by $w^{n}=\left(\begin{array}{cc}v^{n} & h^{n+1} \\ 0 & u^{n+1}\end{array}\right)$ is a morphism of complexes and fits into this diagram.

To check the octahedral axiom (T4), we again may assume that all triangles are standard triangles, that is consider the commutative diagram

The map marked \star in the diagram above is an isomorphism in $\mathbf{K}(\mathscr{A})$, with inverse given by

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & f^{n+1} & 1 & 0
\end{array}\right)_{n}: \operatorname{Cone}\left(\left(\begin{array}{cc}
g^{n} & 0 \\
0 & 1
\end{array}\right)_{n}\right) \longrightarrow \operatorname{Cone}\left(g^{\bullet}\right)
$$

It only remains to check that the square
commutes up to homotopy. In fact one easily checks that it even commutes in $\mathbf{C}(\mathscr{A})$.

Observation 33.2. Any object $A \in \mathcal{O b} \mathscr{A}$ may be considered as a complex $\cdots 0 \longrightarrow A \longrightarrow 0 \longrightarrow \cdots$, with A in degree 0 . This construction gives a fully faithful embedding of \mathscr{A} into $\mathbf{C}(\mathscr{A})$ and into $\mathbf{K}(\mathscr{A})$. (Note that no non-zero map between complexes of this form can be null-homotopic.)

By abuse of notation, we identify the object X with the complex as above.
Lemma 33.3. Let $X \in \mathscr{A}$, and $A^{\bullet} \in \mathbf{C}(\mathscr{A})$. Then we may consider the complex

$$
\operatorname{Hom}_{\mathscr{A}}\left(X, A^{\bullet}\right)
$$

We have

$$
\begin{aligned}
\mathrm{Z}^{n} \operatorname{Hom}_{\mathscr{A}}\left(X, A^{\bullet}\right) & =\operatorname{Hom}_{\mathbf{C}(\mathscr{A})}\left(X, A^{\bullet}[n]\right) \quad \text { and } \\
\mathrm{H}^{n} \operatorname{Hom}_{\mathscr{A}}\left(X, A^{\bullet}\right) & =\operatorname{Hom}_{\mathbf{K}(\mathscr{A})}\left(X, A^{\bullet}[n]\right) .
\end{aligned}
$$

Dually

$$
\begin{aligned}
\mathrm{z}^{n} \operatorname{Hom}_{\mathscr{A}}\left(A^{\bullet}, X\right) & =\operatorname{Hom}_{\mathbf{C}(\mathscr{A})}\left(A^{\bullet}, X[n]\right) \quad \text { and } \\
\mathrm{H}^{n} \operatorname{Hom}_{\mathscr{A}}\left(A^{\bullet}, X\right) & =\operatorname{Hom}_{\mathbf{K}(\mathscr{A})}\left(A^{\bullet}, X[n]\right) .
\end{aligned}
$$

Proof. We see that

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{C}(\mathscr{A})}\left(X, A^{\bullet}[n]\right) & =\left\{\varphi \in \operatorname{Hom}_{\mathscr{A}}\left(X, A^{n}\right) \mid d_{A}^{n} \circ \varphi=0\right\} \\
& =\operatorname{Ker}\left[\operatorname{Hom}_{\mathscr{A}}\left(X, A^{n}\right) \longrightarrow \operatorname{Hom}_{\mathscr{A}}\left(X, A^{n+1}\right)\right] \\
& =\mathrm{Z}^{n} \operatorname{Hom}_{\mathscr{A}}\left(X, A^{\bullet}\right) .
\end{aligned}
$$

Moreover a morphism from X to $A^{\bullet}[n]$ is null-homotopic if and only if if factors through d_{A}^{n-1}, that is lies in

$$
\mathrm{B}^{n} \operatorname{Hom}_{\mathscr{A}}\left(X, A^{\bullet}\right)=\operatorname{Im}\left[\operatorname{Hom}_{\mathscr{A}}\left(X, A^{n-1}\right) \longrightarrow \operatorname{Hom}_{\mathscr{A}}\left(X, A^{n}\right)\right] .
$$

The claim on homology now follows by taking quotients.
Recall that, provided an abelian category \mathscr{A} has enough projectives, we have the functor $\mathrm{p}: \mathscr{A} \longrightarrow \mathbf{K}(\mathscr{A})$ taking an object to its projective resolution. Recall also that, by the horseshoe lemma (Proposition 23.8), for a short exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 \quad \text { in } \mathscr{A}
$$

we have a triangle

$$
\mathrm{p} A \longrightarrow \mathrm{p} B \longrightarrow \mathrm{p} C \longrightarrow \mathrm{p} A[1] \quad \text { in } \mathbf{K}(\mathscr{A}) .
$$

Theorem 33.4. Assume \mathscr{A} has enough projectives. Then

$$
\operatorname{Ext}_{\mathscr{A}}^{n}(A, B)=\operatorname{Hom}_{\mathbf{K}(\mathscr{A})}(\mathrm{p} A, B[n]) .
$$

Dually, if \mathscr{A} has enough injectives, then

$$
\operatorname{Ext}_{\mathscr{A}}^{n}(A, B)=\operatorname{Hom}_{\mathbf{K}(\mathscr{A})}(A, \mathrm{i} B[n]) .
$$

Proof. We have $\operatorname{Ext}_{\mathscr{A}}^{n}(A, B)=\mathrm{H}^{n} \operatorname{Hom}_{\mathscr{A}}(\mathrm{p} A, B)$ by definition. Now the claim follows from Lemma 33.3 above.

Remark 33.5. In view of this theorem, the long exact Hom-Ext-sequence can be seen as a long exact sequence coming from a triangle in the homotopy category.

We proceed by extending the above to arbitrary derived functors. To do so, we need the following two observations:

Observation 33.6. Let \mathscr{A} be an abelian category. Taking homology H^{0} takes triangles in $\mathbf{K}(\mathscr{A})$ to long exact sequences. (This is just a restatement of the long exact sequence of homology - see Theorem 20.6.)

Observation 33.7. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be any additive functor. Then F_{K} preserves triangles.

Construction 33.8. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be right exact. Then the long exact sequence of derived functors (associated to a short exact sequence $A \longmapsto B \rightarrow C$ in \mathscr{A}) is the long exact sequence of homology coming from the triangle

$$
\mathrm{F}_{\mathbf{K}} A \longrightarrow \mathrm{~F}_{\mathrm{K}} B \longrightarrow \mathrm{~F}_{\mathbf{K}} C \longrightarrow \mathrm{~F}_{\mathrm{K}} A[1] \quad \text { in } \mathbf{K}(\mathscr{B})
$$

34 Derived categories

Derived categories address the following two (closely related) issues with homotopy categories:

- Short exact sequences are not triangles in the homotopy category. (However one may get triangles replacing the objects by projective or injective resolutions.)
- Quasi-isomorphisms preserve all information on homology, but are not isomorphisms in the category $\mathbf{K}(\mathscr{A})$. In particular, in the discussion above, we had to take a projective or injective resolution, instead of the object itself (which is quasi-isomorphic).

The answer to these issues it to (brute force) make quasi-isomorphisms invertible.

Construction 34.1. Let \mathscr{A} be an abelian category. A roof from a complex X^{\bullet} to Y^{\bullet} is a diagram of the form

with some middle object \tilde{X}^{\bullet}, and where q is a quasi-isomorphism. For compact notation we write the above roof as $f \cdot q^{-1}$.

Two roofs $f \cdot q^{-1}$ and $g \cdot r^{-1}$ are called equivalent if there is a commutative diagram

Remark 34.2. In other words, if we denote the middle quasi-isomorphisms by q^{\prime} and r^{\prime} respectively, we find a common denominator $q \circ q^{\prime}=r \circ r^{\prime}$, and then compare the enumerators $f \circ q^{\prime}$ and $g \circ r^{\prime}$.

We need to check that the above notion of equivalence defines an equivalence relation. To that end (and in fact throughout the discussion of roofs) we need the following observation.

Lemma 34.3 (Ore condition). Let \mathscr{A} be an abelian category. Given the solid part of the following square, where q is a quasi-isomorphism, it is possible to find the dashed part (including \tilde{Y}^{\bullet}), where r is a quasi isomorphism.

Dually, given the dashed part, it is possible to find the solid part.

Proof. We complete q to a triangle as in the upper row of the following diagram

Now by (T1) and (T3) we can complete the diagram as indicated by the dashed arrows, such that the lower row is also a triangle. Since q is quasi-iso we know that Cone (q) is exact. Now, since the cone of r is (isomorphic to) Cone (q), it follows that also r is a quasi-isomorphism.

Lemma 34.4. The above defines an equivalence relation on the collection of roofs from X^{\bullet} to Y^{\bullet}.

Proof. The definition of equivalence is clearly reflexive and symmetric.
Assume $f \cdot q^{-1}$ is equivalent to $g \cdot r^{-1}$, which in turn is equivalent to $h \cdot s^{-1}$,
as in the solid part of the following diagram.

By the Ore condition (Lemma 34.3) is is possible to find \hat{H}^{\bullet} and the two dashed quasi-isomorphisms such that the square in the middle commutes. (One easily sees that if three sides of a square are quasi-iso, then so is the forth.)

Now the claim follows by considering \hat{H}^{\bullet} between the two outer roofs.

Construction 34.5. Let \mathscr{A} be an abelian category. Assume that for any complexes X^{\bullet} and Y^{\bullet}, the collection of roofs from X^{\bullet} to Y^{\bullet} up to equivalence is a set. Then we define the derived category by

$$
\begin{aligned}
\mathcal{O} \mathbf{D}(\mathscr{A}) & =\mathcal{O} \mathbf{K}(\mathscr{A}) \quad \text { and } \\
\operatorname{Hom}_{\mathbf{D}(\mathscr{A})}\left(X^{\bullet}, Y^{\bullet}\right) & =\left\{\text { roofs from } X^{\bullet} \text { to } Y^{\bullet}\right\} / \sim,
\end{aligned}
$$

with composition given as follows:
Given $f \cdot q^{-1}: X^{\bullet} \longrightarrow Y^{\bullet}$, and $g \cdot r^{-1}: Y^{\bullet} \longrightarrow Z^{\bullet}$ as in the solid part of the
following diagram,

we may find $\tilde{\tilde{X}}^{\bullet}$ and the two dashed maps by the Ore condition (Lemma 34.3) . We now define the product to be

$$
\left(g \cdot r^{-1}\right) \circ\left(f \cdot q^{-1}\right)=(g \tilde{f}) \cdot(q \tilde{r})^{-1} .
$$

One may check that this is well-defined up to equivalence of roofs, and only depends on the equivalence class of the factors. Then it is easy to see that this multiplication is associative.

Observation 34.6.

- The derived category comes with a natural functor $\mathbf{K}(\mathscr{A}) \longrightarrow \mathbf{D}(\mathscr{A})$ which is sends every complex to itself, and a morphism f to the trivial roof $f \cdot \mathrm{id}^{-1}$.
- A complex X^{\bullet} becomes isomorphic to 0 in $\mathbf{D}(\mathscr{A})$ if and only if it is exact.
- A morphism f in $\mathbf{K}(\mathscr{A})$ is mapped to the zero-morphism in $\mathbf{D}(\mathscr{A})$ if there is a quasi-isomorphism q such that $f \circ q=0$. One can prove that this is equivalent to f factoring through an exact complex. (To see this, consider the cone of q.)
- For a quasi-isomorphism q, also the shift $q[n]$ is a quasi-isomorphism for any n. It follows that [1] defines an autoequivalence of $\mathbf{D}(\mathscr{A})$.
Theorem 34.7. Let \mathscr{A} be an abelian category, such that $\mathbf{D}(\mathscr{A})$ is defined. Then $\mathbf{D}(\mathscr{A})$ is a triangulated category, where Δ consists of all triangles isomorphic to standard triangles

$$
X^{\bullet} \xrightarrow{f} Y^{\bullet} \longrightarrow \operatorname{Cone}(f) \longrightarrow X^{\bullet}[1]
$$

where f is a morphism of complexes.

Proof. We check the axioms. Here we make heavy use of the fact that we already checked the axioms for $\mathbf{K}(\mathscr{A})$.
(T1) For the first bullet point (there is a triangle starting with any morphism) we proceed as follows: Given the morphism $f \cdot q^{-1}$ we first find a standard triangle starting with f, and then alter it by the isomorphism q.

The second bullet point (triangle with identity as first morphism) follows from the same statement for $\mathbf{K}(\mathscr{A})$.

The third one (Δ closed under isos) holds by definition.
(T2) Up to isomorphism, the triangle is a standard triangle. For such triangles we know that the rotations are isomorphic to standard triangles in $\mathbf{K}(\mathscr{A})$, and therefore also in $\mathbf{D}(\mathscr{A})$.
(T3) Up to isomorphism we may assume that the two triangles we want to connect are standard triangles. That is we have the solid part of the following diagram.

By the Ore condition (Lemma 34.3) we can find the two dashed maps as in the diagram above, such that the upper pentagon commutes. We may even choose them in such a way that also the lower pentagon commutes.

We complete \tilde{a} to a triangle, and apply (T3) for the homotopy category to find the morphisms s and h making the diagram commutative. Taking homology and applying the five lemma (Theorem 14.1), we can see that r and $q \circ \tilde{q}$ being quasi-isomorphisms automatically also makes s a quasi-isomorphism. Thus the morphism $h \cdot s^{-1}$ in $\mathbf{D}(\mathscr{A})$ is the desired morphism between cones.
(T4) For the octahedral axiom, one may argue (similarly to the above) that all the input data lies in the homotopy category, and thus (T4) follows from the same axiom for $\mathbf{K}(\mathscr{A})$.

Remark 34.8. It might seem like we gained little, since the triangles in the
derived category are "the same" as the triangles in the homotopy category. However, since there are now more isomorphisms (all quasi-isos have become isomorphisms), there are in fact "more" triangles.

Example 34.9. Let $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be a short exact sequence in an abelian category. Then there is a triangle

$$
A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow A[1] \text { in } \mathbf{D}(\mathscr{A}) .
$$

To see this, consider the standard triangle

$$
A \xrightarrow{f} B \xrightarrow{\binom{1}{0}} \operatorname{Cone}(f) \xrightarrow{(01)} A[1] .
$$

We note that Cone (f) is the complex in the upper row of the following diagram, and that the vertical map here is a quasi-isomorphism

Thus we also have the (isomorphic) triangle

$$
A \xrightarrow{f} B \xrightarrow{q \circ\binom{1}{0}} C \xrightarrow{(01) \cdot q^{-1}} A[1]
$$

in $\mathbf{D}(\mathscr{A})$. Finally note that $q \circ\binom{1}{0}=g$.
Theorem 34.10. Let \mathscr{A} be abelian, and $A, B \in \mathcal{O b} \mathscr{A}$. Then

$$
\operatorname{Hom}_{\mathbf{D}(\mathscr{A})}(A, B[n])= \begin{cases}0 & \text { if } n<0 \\ \operatorname{Hom}_{\mathscr{A}}(A, B) & \text { if } n=0 \\ \operatorname{VExt}_{\mathscr{A}}^{1}(A, B) & \text { if } n=1\end{cases}
$$

Proof. We consider roofs

where q is a quasi-isomorphism.
We first consider the truncation of E^{\bullet} to the right as in the following diagram.

One may observe that the natural map $r: \tau^{\leqslant 0} E^{\bullet} \longrightarrow E^{\bullet}$ indicated above induces an isomorphism on all non-positive homologies. Since in our setup E^{\bullet} is quasiisomorphic to A it has non-zero homology only in degree 0 . Therefore r is a quasi-isomorphism.

It follows that the roof $f \cdot q^{-1}$ is equivalent to the roof $f r \cdot(q r)^{-1}$. In other words, up to equivalence we may assume that E^{\bullet} is concentrated in non-positive degrees.

This proves the first claim, since $B[n]$ is concentrated in (the in that case positive) degree $-n$.

Now assume $n \geqslant 0$. Then we may (similarly to the above) cut off the left part of E^{\bullet} as indicated in the following diagram.

As before we see that the map $s: E^{\bullet} \longrightarrow \tau^{\geqslant-n} E^{\bullet}$ is a quasi-isomorphism (since $n \geqslant 0$).

Now observe that both q and f factor through s (since both A and $B[n]$ are concentrated in degrees $\geqslant-n)$, say via q^{\prime} and f^{\prime}. Then we see that the roof $f \cdot q^{-1}$ is equivalent to $f^{\prime} \cdot\left(q^{\prime}\right)^{-1}$. Thus now we may assume that E^{\bullet} is concentrated in degrees $-n, \ldots, 0$.

Now we consider the case $n=0$. Then, by the above discussion, we may assume that $E^{\bullet \bullet}$ is concentrated in degree 0 . Thus q is an isomorphism, and hence $f \cdot q^{-1}$ lies in the image of the natural map $\operatorname{Hom}_{\mathscr{A}}(A, B) \longrightarrow \operatorname{Hom}_{\mathbf{D}(\mathscr{A})}(A, B)$. Conversely this map is also injective, since no non-zero morphism from A to B has vanishing homology.

Proposition 34.11. Let \mathscr{A} be an abelian category, and P^{\bullet} a right bounded complex of projectives. (That is all P^{n} are projective, and $\exists N \forall n>N: P^{n}=0$.) Then
(1) Let E^{\bullet} be an exact complex. Then $\operatorname{Hom}_{\mathbf{K}(\mathscr{A})}\left(P^{\bullet}, E^{\bullet}\right)=0$.
(2) Any quasi-isomorphism $\tilde{P}^{\bullet} \longrightarrow P^{\bullet}$ from any complex \tilde{P}^{\bullet} to P^{\bullet} is a split epimorphism in the category $\mathbf{K}(\mathscr{A})$.
(3) Let X^{\bullet} be any complex. Then the map

$$
\operatorname{Hom}_{\mathbf{K}(\mathscr{A})}\left(P^{\bullet}, X^{\bullet}\right) \longrightarrow \operatorname{Hom}_{\mathbf{D}(\mathscr{A})}\left(P^{\bullet}, X^{\bullet}\right)
$$

is an isomorphism.
Proof. (1) Let $f^{\bullet}: P^{\bullet} \longrightarrow E^{\bullet}$ be a morphism of complexes. We construct a nullhomotopy iteratedly from right to left. So let n be some index, and assume we already have $h^{i}: P^{i} \longrightarrow E^{i-1}$ for $i>n$, such that $f^{i}=d_{E}^{i-1} \circ h^{i}+h^{i+1} d_{P}^{i}$. (Note that this is automatic for $n \geqslant N$ - thus we have a starting point for our iterated construction.)

The setup is depicted in the following diagram.

We observe that $d_{E}^{n} \circ\left(f^{n}-h^{n+1} \circ d_{P}^{n}\right)=0$, and hence $f^{n}-h^{n+1} \circ d_{P}^{n}$ factors through $\operatorname{Im} d_{E}^{n-1}=\operatorname{Ker} d_{E}^{n}$ as indicated by the dashed arrow above. Since P^{n} is projective we may lift along the epimorphism $E^{n-1} \rightarrow \operatorname{Im} d_{E}^{n-1}$, obtaining h^{n} as indicated by the dotted arrow.
(2) Let $q: \tilde{P}^{\bullet} \longrightarrow P^{\bullet}$ be a quasi-isomorphism. Then, in the triangle

$$
\tilde{P}^{\bullet} \xrightarrow{q} P^{\bullet} \longrightarrow \operatorname{Cone}(q) \longrightarrow \tilde{P}^{\bullet}[1]
$$

in $\mathbf{K}(\mathscr{A})$, the complex Cone (q) is exact (Corollary 21.6), so by (1) the middle map vanishes.

It now follows that q is a split epimorphism.
(3) By (2) in any fraction $f \cdot q^{-1}: P^{\bullet} \longrightarrow X^{\bullet}$ the quasi-isomorphism q is a split epimorphism. Thus we may find \tilde{q} such that $q \circ \tilde{q}=\operatorname{id}_{P} \bullet$. One easily checks that $f \cdot q^{-1}=(f \tilde{q}) \cdot \mathrm{id}^{-1}$, so it lies in the image of the functor $\mathbf{K}(\mathscr{A}) \longrightarrow \mathbf{D}(\mathscr{A})$.

On the other hand, we know that a morphism f in $\mathbf{K}(\mathscr{A})$ vanishes in $\mathbf{D}(\mathscr{A})$ if and only if there is a quasi-isomorphism q such that $f \circ q=0$ (Observation 34.6. However, by (2) such a quasi-isomorphism is a split epimorphism, hence $f=$ 0.

Corollary 34.12. Assume \mathscr{A} has enough projectives or enough injectives. Then

$$
\operatorname{Hom}_{\mathbf{D}(\mathscr{A})}(A, B[n])=\operatorname{Ext}_{\mathscr{A}}^{n}(A, B)
$$

for any n and objects A and B of \mathscr{A}.
Proof. Assume \mathscr{A} has enough projectives, and let $\mathrm{p} A$ be a projective resolution of A. Then the natural projection $q: \mathrm{p} A \longrightarrow A$ is a quasi-isomorphism, and so

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{D}(\mathscr{A})}(A, B[n]) & =\operatorname{Hom}_{\mathbf{D}(\mathscr{A})}(\mathrm{p} A, B[n]) & & \\
& =\operatorname{Hom}_{\mathbf{K}(\mathscr{A})}(\mathrm{p} A, B[n]) & & \text { (by Proposition 34.11) } \\
& \left.=\operatorname{Ext}_{\mathscr{A}(A, B)}^{n}\right) & & \text { (by Theorem 33.4 }
\end{aligned}
$$

Remark 34.13. - By Example 34.9 a short exact sequence in \mathscr{A} "is" a triangle in $\mathbf{D}(\mathscr{A})$. Thus, by Corollary 34.12 above, the long exact HomExt sequence can be interpreted as the long exact Hom-sequence coming from this triangle.

- Corollary 34.12 and Theorem 34.10 also show that all definitions of Ext coincide, when they are defined (Yoneda-Ext, deriving by first argument, and deriving by second argument).

35 Derived functors

Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be an additive functor. We observed that applying this functor position by position gives rise to a functor $\mathrm{F}_{\mathbf{K}}: \mathbf{K}(\mathscr{A}) \longrightarrow \mathbf{K}(\mathscr{B})$. We would now
like to do the same thing for derived categories, that is we would like to have a functor F_{D} making the following square commutative

where $\pi_{\mathscr{A}}$ and $\pi_{\mathscr{B}}$ are the canonical functors from the homotopy categories to the corresponding derived categories.

Unfortunately, however, it is not possible to find such a functor F_{D} in general:
Lemma 35.1. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be an additive functor between abelian categories. Then a functor $\mathrm{F}_{\mathbf{D}}: \mathbf{D}(\mathscr{A}) \longrightarrow \mathbf{D}(\mathscr{B})$ making the diagram above commutative exists if and only if F is exact.
Proof. If the functor F is exact, then it preserves homology, and thus in particular $\mathbf{F}_{\mathbf{K}}$ preserves quasi-isomorphisms. It follows that we can define $\mathbf{F}_{\mathbf{D}}\left(f \cdot q^{-1}\right)=$ $\mathbf{F}_{\mathbf{K}}(f) \cdot \mathbf{F}_{\mathbf{K}}(q)^{-1}$. (Note that $\mathbf{F}_{\mathbf{K}}$ preserves equivalence of roofs, so this is in fact well-defined.)

On the other hand, if F is not an exact functor, then there will be a short exact sequence $A_{1} \longrightarrow A_{2} \rightarrow A_{3}$ in \mathscr{A} such that the image

$$
0 \longrightarrow \mathrm{~F} A_{1} \longrightarrow \mathrm{~F} A_{2} \longrightarrow \mathrm{~F} A_{3} \longrightarrow 0
$$

is not exact. Interpreting this sequence as an element of $\mathbf{K}(\mathscr{A})$, we see that the object is sent to 0 by $\pi_{\mathscr{A}}$, but not by $\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}$. Clearly this makes it impossible to obtain a commutative square as above.

Since it usually is not possible to find a functor F_{D} as above, one is lead to consider functors that make the square "as commutative as possible".

Definition 35.2. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be an additive functor between abelian categories. A (total) left derived functor of F is a functor $\mathbf{L F}: \mathbf{D}(\mathscr{A}) \longrightarrow \mathbf{D}(\mathscr{B})$, together with a natural transformation $\phi: \mathbf{L F} \circ \pi_{\mathscr{A}} \longrightarrow \pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}$, which is universal in the following sense:

For any other functor $\mathrm{G}: \mathbf{D}(\mathscr{A}) \longrightarrow \mathbf{D}(\mathscr{B})$, together with a natural transformation $\psi:$ G० $\pi_{\mathscr{A}} \longrightarrow \pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}$, there is a unique natural transformation $\zeta: \mathrm{G} \longrightarrow \mathbf{L F}$ such that $\psi=\phi \circ \zeta_{\pi_{\mathscr{A}}}$.

Dually, a (total) right derived functor of F is a functor $\mathbf{R F}: \mathbf{D}(\mathscr{A}) \longrightarrow \mathbf{D}(\mathscr{B})$, together with a natural transformation $\phi: \pi_{\mathscr{B}} \circ \mathrm{F}_{\mathrm{K}} \longrightarrow \mathbf{R F} \circ \pi_{\mathscr{A}}$ satisfying a dual universal property.

Remark 35.3. In general, there is no reason for a total left or right derived functor to exist.

However, if one does exist, then the universal property guarantees that it is unique (up to unique natural isomorphism). Therefore we can talk about the left derived functor or the right derived functor in this case.

It is a bit technical to construct total derived functors between the entire derived categories in general (and requires additional assumptions on \mathscr{A}). To simplify our situation here a bit we consider the full subcategory of right bounded complexes

$$
\mathbf{C}^{-}(\mathscr{A})=\left\{A^{\bullet} \mid \exists N \forall n>N A^{n}=0\right\} \subset \mathbf{C}(\mathscr{A}),
$$

and its counterparts $\mathbf{K}^{-}(\mathscr{A}) \subset \mathbf{K}(\mathscr{A})$ and $\mathbf{D}^{-}(\mathscr{A}) \subset \mathbf{D}(\mathscr{A})$. Similarly we may consider the category of left bounded complexes $\mathbf{C}^{+}(\mathscr{A})$, the homotopy category of left bounded complexes $\mathbf{K}^{+}(\mathscr{A})$, and the derived category of left bounded complexes $\mathbf{D}^{+}(\mathscr{A})$.

Proposition 35.4. Assume \mathscr{A} has enough projectives. For any right bounded complex A^{\bullet} there is a right bounded complex $\mathrm{p}\left(A^{\bullet}\right)$ of projectives and a quasiisomorphism $\mathrm{p}\left(A^{\bullet}\right) \longrightarrow A^{\bullet}$.

This construction gives a functor

$$
\mathrm{p}: \mathbf{D}^{-}(\mathscr{A}) \longrightarrow \mathrm{K}^{-}(\mathscr{A})
$$

which is left adjoint to projection $\pi: \mathbf{K}^{-}(\mathscr{A}) \longrightarrow \mathbf{D}^{-}(\mathscr{A})$. Moreover, the unit of the adjunction $\epsilon: \mathrm{id}_{\mathbf{D}^{-}(\mathscr{A})} \longrightarrow \pi \mathrm{p}$ is a natural isomorphism.
Proof. We construct $\mathrm{p}\left(A^{\bullet}\right)$ iteratedly from right to left. Assume all A^{i} with $i>$ n are already projective. Pick an epimorphism $P^{n} \longrightarrow A^{n}$ with P^{n} projective, and consider the following diagram

where the map $P^{n} \longrightarrow A^{n+1}$ is composition, and the map $A^{n-2} \longrightarrow A^{n-1} \prod_{A^{n}} P^{n}$ is obtained from the pullback property. Since the pullback is taken along an epimorphism the middle square is in fact exact, and thus this morphism of complexes is a quasi-isomorphism.

Iterating this construction one obtains the desired quasi-isomorphism

$$
\eta_{A^{\bullet}}: \mathrm{p}\left(A^{\bullet}\right) \longrightarrow A^{\bullet} .
$$

Now we can first turn p into a functor $\mathbf{D}^{-}(\mathscr{A}) \longrightarrow \mathbf{D}^{-}(\mathscr{A})$ by setting $\mathrm{p}(f)=$ $\eta_{B}^{-1} \circ f \circ \eta_{A}$ for any morphism $f: A^{\bullet} \longrightarrow B^{\bullet}$. Since by Proposition 34.11(3) the morphism sets in the derived and homotopy category coincide on right bounded complexes of projectives, p defines a functor $\mathbf{D}^{-}(\mathscr{A}) \longrightarrow \mathbf{K}^{-}(\mathscr{A})$.

The fact that p is left adjoint to π follows from

$$
\left.\operatorname{Hom}_{\mathbf{K}^{-}(\mathscr{A})}\left(\mathrm{p} A^{\bullet}, B^{\bullet}\right) \stackrel{\sqrt[34.11]{ }}{\cong}^{3}\right) \operatorname{Hom}_{\mathbf{D}^{-}(\mathscr{A})}\left(\mathrm{p} A^{\bullet}, B^{\bullet}\right) \cong \operatorname{Hom}_{\mathbf{D}^{-}(\mathscr{A})}\left(A^{\bullet}, B^{\bullet}\right)
$$

where the second isomorphism is due to the fact that the quasi-isomorphism η_{A} • becomes an isomorphism in the derived category.

Finally we note that the unit is given by $\epsilon_{A} \bullet=\left(\eta_{A} \bullet\right)^{-1}-$ which is defined on the derived level.

Now we can prove that total right derived functors can be understood using projective resolutions at least in the setup of right bounded complexes.

Theorem 35.5. Let $\mathrm{F}: \mathscr{A} \longrightarrow \mathscr{B}$ be an additive functor between abelian categories.

- Assume that \mathscr{A} has enough projectives. Then on the subcategories of right bounded complexes there is a total left derived functor

$$
\mathrm{LF}: \mathbf{D}^{-}(\mathscr{A}) \longrightarrow \mathbf{D}^{-}(\mathscr{B})
$$

given by $\mathbf{L F}=\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}} \circ \mathrm{p}$.

- Dually, if \mathscr{A} has enough injectives, then there is a total right derived functor

$$
\mathbf{R F}: \mathbf{D}^{+}(\mathscr{A}) \longrightarrow \mathbf{D}^{+}(\mathscr{B})
$$

with respect to left bounded complexes, given by $\mathbf{R F}=\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}} \circ \mathrm{i}$.

Proof. We only prove the first claim, the second one is dual.
First note that in the diagram

we do have a natural transformation $\phi: \mathbf{L F} \circ \pi_{\mathscr{A}} \longrightarrow \pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}$. Recalling that p is left adjoint to $\pi_{\mathscr{A}}$ (see Proposition 35.4 above) we have the counit η : po $\pi_{\mathscr{A}} \longrightarrow \operatorname{id}_{\mathbf{K}^{-}(\mathscr{A})}$. We now choose

$$
\phi=\left(\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}\right)(\eta): \underbrace{\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}} \circ \mathrm{p}}_{=\mathbf{L F}} \circ \pi_{\mathscr{A}} \longrightarrow \pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}} .
$$

It only remains to verify that our choice of $\mathbf{L F}$ and ϕ satisfy the universal property of Definition 35.2 Let $\mathrm{G}: \mathbf{D}^{-}(\mathscr{A}) \longrightarrow \mathbf{D}^{-}(\mathscr{B})$ be a different functor, together with a natural transformation $\psi: \mathrm{G} \circ \pi_{\mathscr{A}} \longrightarrow \pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}$. If $\zeta: \mathrm{G} \longrightarrow \mathbf{L F}$ is a natural transformation such that $\psi=\phi \circ \zeta_{\pi_{\mathscr{A}}}$ then

$$
\psi_{\mathrm{p}}=\phi_{\mathrm{p}} \circ \zeta_{\pi_{\mathscr{A}} \mathrm{op}}
$$

Since the unit $\epsilon: \operatorname{id}_{\mathbf{D}^{-}(\mathscr{A})} \longrightarrow \pi_{\mathscr{A}} \circ \mathrm{p}$ is a natural isomorphism, and since

$$
\phi_{\mathrm{p}}=\left(\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}\right)\left(\eta_{\mathrm{p}}\right)=\left(\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}} \circ \mathrm{p}\right)\left(\epsilon^{-1}\right)
$$

we obtain

$$
\zeta=\mathbf{L F}(\epsilon)^{-1} \circ \zeta_{\pi_{\nsim \rho} \circ \mathrm{p}} \circ \mathrm{G}(\epsilon)=\psi_{\mathrm{p}} \circ \mathrm{G}(\epsilon)
$$

In particular ζ as uniquely determined.
Conversely, with the choice $\zeta=\psi_{\mathrm{p}} \circ \mathrm{G}(\epsilon)$, we obtain

$$
\begin{aligned}
\phi \circ \zeta_{\pi_{\mathscr{A}}} & =\left(\pi_{\mathscr{B}} \circ \mathrm{F}_{\mathbf{K}}\right)(\eta) \circ \psi_{\mathrm{p} \pi_{\mathscr{A}}} \circ \mathrm{G}\left(\epsilon_{\pi_{\mathscr{A}}}\right) \\
& =\psi \circ\left(\mathrm{G} \circ \pi_{\mathscr{A}}\right)(\eta) \circ \mathrm{G}\left(\epsilon_{\pi_{\mathscr{A}}}\right) \\
& =\psi \circ \mathrm{G}(\underbrace{\pi_{\mathscr{A}}(\eta) \circ \epsilon_{\pi_{\mathscr{A}}}}_{=\mathrm{id}_{\mathbf{D}^{-}(\mathscr{A})}}) \\
& =\psi .
\end{aligned}
$$

Thus our choice of $\mathbf{L F}$ and ϕ does satisfy the universal property, so it is the total left derived functor of F.

Remark 35.6. - Theorem 35.5 shows, in particular, that the appearance of projective and injective resolutions in the definition of left and right derived functors is not an arbitrary choice / coincidence. On the contrary, the definition of derived functors via a universal property forces this construction.

- In many cases an obvious analog of Theorem 35.5 also holds for unbounded complexes. However, for such a result one typically needs that \mathscr{A} has certain colimits (essentially along the poset \mathbb{Z}), and that these colimits are exact.

36 Exercises

Exercise VI.1. Let \mathscr{T} be a triangulated category, and $X \rightarrow Y \longrightarrow Z \longrightarrow X[1]$ a distinguished triangle. Assume the map $Z \longrightarrow X[1]$ is 0 . Show that the (rest of the) triangle then is a split short exact sequence.

Exercise VI.2. Let \mathscr{T} be a triangulated category. Assume that \mathscr{T} is in addition abelian. Show that \mathscr{T} is semisimple.

Exercise VI.3. Let \mathscr{A} be an abelian category. Show that any complex is isomorphic to its homology in $\mathbf{K}(\mathscr{A})$ if and only if \mathscr{A} is semisimple.
(Here the homology of a complex X^{\bullet} is considered as the complex $\left.\cdots \xrightarrow{0} \mathrm{H}^{-1}\left(X^{\bullet}\right) \xrightarrow{0} \mathrm{H}^{0}\left(X^{\bullet}\right) \xrightarrow{0} \mathrm{H}^{1}\left(X^{\bullet}\right) \longrightarrow \cdots.\right)$

Exercise VI.4. Let \mathscr{T} be a triangulated category, and $C \longrightarrow F \longrightarrow B \xrightarrow{f} C[1]$ and $B \rightarrow E \longrightarrow A \xrightarrow{g} B[1]$ two distinguished triangles. Assume the composition $f[1] \circ g: A \longrightarrow C[2]$ vanishes. Show that there is an object X and morphisms as indicated by the dashed arrows below, such that the diagram commutes and
the new row and new column are distinguished triangles too.

(Compare to Exercise V.10)
Exercise VI.5. Let \mathscr{A} be abelian. Let A^{\bullet} be a complex concentrated in negative degrees ($A^{n}=0 \forall n \geqslant 0$), and B^{\bullet} be a complex concentrated in non-negative degrees ($B^{n}=0 \forall n<0$).

Show that $\operatorname{Hom}_{\mathbf{D}(\mathscr{A})}\left(A^{\bullet}, B^{\bullet}\right)=0$.
Exercise VI.6. Let \mathscr{T} be a triangulated category, and \mathscr{U} be a triangulated subcategory. (That is a full subcategory closed under [1] and $[-1]$, and such that the cone of any morphism in the subcategory is in \mathscr{U} again.)

Let \mathscr{S} be the collection of all morphisms in \mathscr{T}, whose cone lies in \mathscr{U}.
Show that (up to set theoretical issues) one can define a triangulated category $\mathscr{S}^{-1} \mathscr{T}$ making all morphisms in \mathscr{S} invertible in the same way as we defined the derived category in the lectures.

Index

3×3 Lemma, 50
Ab, 6
abelian category, 34
additive category, 29
adjoint pair of functors, 15
$\mathrm{B}^{n}(-), 64$
Baer sum, 83
balanced map, 56
biproduct, 29
boundaries, 64
$\mathbf{C}(-), 63$
category, 5
small, 11
coboundaries, see boundaries
cocycles, see cycles
cohomology, see homology
coimage, 33
cokernel, 32
colimit, 18
complex, 63
cone, 66
contravariant functor, see functor, covariant
coproduct, 19
cosyzygy, 81
counit
of an adjunction, 17
covariant functor, see functor, covariant
cycles, 64
dense functor, see functor, dense
derived category, 112
derived functor, 77
total, 119
dimension shift, 81
double complex, 86
elementary tensor, 56
enough injectives, 70
enough projectives, 70
epimorphism, 7
split, 7
equivalence of categories, 13
exact functor, 54
exact sequence, 35
short, 35
Ext, 78
is balanced, 88
Yoneda-Ext, 82
faithful functor, see functor, faithful
Five lemma, 40
flat module, 59
free module, 16
is projective, 56
full functor, see functor, full
full subcategory, see subcategory, full functor, 8
contravariant, 8
covariant, 8
dense, 9
faithful, 9
full, 9
global dimension, 90
Gp, 6
$\mathrm{H}^{n}(-), 64$
hereditary, 90
Hom-functor
contravariant, 9
covariant, 9
Hom-tensor-adjunction, 58
homology, 64
long exact sequence, 65
homotopic morphisms, 69
homotopy category, 69
Horseshoe lemma, 73
image, 33
injective, 54
injective dimension, 91
injective resolution, 71
isomorphism, 8
kernel, 32
left derived functor
total, 119
left exact functor, 54
limit, 18
mapping cone, see cone
matrix notation, 31
monomorphism, 7
split, 7
morphism, 5
natural isomorphism, 10
natural transformation, 10
null-homotopic, 69
object, 5
octahedral axiom, 102
opposite category, 6
Ore condition, 110
poset category, 7
pre-abelian category, 33
pre-additive category, 29
presheaf
on a category, 9
on a poset, 9
product, 19
projective, 54
projective dimension, 91
projective resolution, 71
as functor, 72
pullback, 20
pushout, 20
quasi-isomorphism, 69
retraction, 7
right derived functor total, 119
right exact functor, 54
roof, 110
Salamander Lemma, 51
section, 7
semisimple, 90
Set, 6
shift, 66
short exact sequence, 35
small category, 11

Snake lemma, 44
split epimorphism, 7
split monomorphism, 7
subcategory, 7
full, 7
suspension, see shift
syzygy, 80
tensor product, 56
is right exact, 59
Top, 6
Tor, 78
is balanced, 90
total complex, 87
total derived functor, 119
total left derived functor, 119
total right derived functor, 119
triangulated category, 101
unit
of an adjunction, 17
Yoneda embedding, 13
Yoneda lemma, 12
Yoneda-Ext, 82
$\mathrm{Z}^{n}(-), 64$
zero-object, 29

